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ABSTRACT
We present a system for generating and visualizing interac-
tive 3D Augmented Reality tutorials based on 2D video input,
which allows viewpoint control at runtime. Inspired by as-
sembly planning, we analyze the input video using a 3D CAD
model of the object to determine an assembly graph that en-
codes blocking relationships between parts. Using an assembly
graph enables us to detect assembly steps that are otherwise
difficult to extract from the video, and generally improves
object detection and tracking by providing prior knowledge
about movable parts. To avoid information loss, we combine
the 3D animation with relevant parts of the 2D video so that
we can show detailed manipulations and tool usage that cannot
be easily extracted from the video. To further support user
orientation, we visually align the 3D animation with the real-
world object by using texture information from the input video.
We developed a presentation system that uses commonly avail-
able hardware to make our results accessible for home use and
demonstrate the effectiveness of our approach by comparing it
to traditional video tutorials.
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Augmented reality; video label; retargeting; assembly tutorial.

CCS Concepts
•Human-centered computing → Mixed / augmented real-
ity; Graphical user interfaces; Human computer interac-
tion (HCI); Mobile computing;

INTRODUCTION
Assembly and disassembly procedures are recurring activities
in today’s industrialized society. Popular examples include the
assembly of new furniture and the maintenance of household
appliances. Publicly available knowledge databases, such as
YouTube1 or Instructables2, provide information on how to
build or maintain complex objects. Hence, such tasks are no
longer limited to occupations requiring specialized training.

1www.youtube.com
2www.instructables.com
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Figure 1. Video annotated assembly tutorial. Our system converts an
assembly video tutorial into a 3D animation of a video textured 3D model
and annotates it with the corresponding video sequence. These video
labels provide missing details, such as tools and complex motions that
are required to perform the actions.

Traditionally, assembly and disassembly procedures are com-
municated using textual descriptions that are often combined
with a series of images for illustrating motions [34]. As com-
plex manipulations are difficult to visualize in a series of
images, illustrations are often complemented with video in-
structions [37]. Such video tutorials are widely available on
the Internet and an abundant source of information.

Following video tutorials may be challenging, when the user’s
current viewpoint is not aligned with the one in the video [6].
Interactive 3D tutorials utilize object tracking to overcome
the issue of mismatching viewpoints [19] by presenting 3D
instructions that are aligned with the user’s current view of
the object. This enables users to perceive both, the real-world
object and the associated instructions, from a single viewpoint.
However, creating 3D animations for this kind of interactive
tutorials is often difficult and, thus, quickly becomes time-
consuming and expensive.

In order to support the authoring process of such interactive
3D tutorials, researchers have investigated video retargeting
approaches that create these tutorials from existing 2D video
tutorials [38, 12]. Video retargeting heavily relies on Computer
Vision (CV) techniques to detect and track objects in the
video [37, 12, 55] and consequently generate the required
instructional 3D animations. However, video tutorials often
present cases that cannot be handled gracefully by the utilized
CV algorithms, thereby restricting the extracted instructions to
the capabilities of the object detector that analyzes the video.

www.youtube.com
www.instructables.com


For instance, existing algorithms commonly fail when parts
are occluded or have a small footprint in the 2D video. In
such situations, the extracted instructions may only represent a
subset of the complete assembly procedure. Due to these short-
comings, many retargeting approaches are only demonstrated
on assemblies which consists of large detectable parts.

In this paper, we propose a novel approach for retargeting
assembly video tutorials, which allows us to obtain a com-
plete and detailed instructional 3D tutorial that also encom-
passes small and occluded parts. The extracted instructions
are presented in an Augmented Reality (AR) “magic mirror”
setup [15], as shown in Figure 1. Users work in front of a
display showing the instructions overlaid onto a copy of the
current work piece. The workpiece is tracked to infer orienta-
tion changes so that the viewpoint of the instruction is aligned
with the one of the user.

We base our instruction extraction method on the principle
of assembly-by-disassembly [11], a common technique in as-
sembly planning [26]. Assembly-by-disassembly determines
the assembly steps by disassembling the object of interest
and reverting the calculated sequence. We follow a similar
approach and parse the input video in reverse, starting with
the completely assembled object and analyzing its disassem-
bly. Therefore, by reverting the determined removal sequence,
we retrieve the actual assembly steps that we use to generate
our instruction visualization. This simple but effective idea
allows tracking the removal of parts instead of having to detect
the presence of new parts, which provides significant benefits
to object detection and tracking. A major advantage is that
we can use direct observations in the input video for object
tracking, whereas previous approaches had to rely on object
detection using synthetic 3D renderings [55].

Our approach extracts complete assembly instructions in-
cluding manipulations of visually undetectable parts and
presents them as animated 3D instructions. We achieve this
by combining CV object tracking with queries of an assembly
graph [27] of the target object that encodes blocking relation-
ships between parts and allows us to identify small or occluded
parts in the video. We enhance the presentation of 3D instruc-
tions by annotating the object with video sequences from the
input video tutorial to preserve details, such as complex as-
sembly motions, tool usage or non-rigid object deformations.
To make interactive 3D AR tutorials widely available to users,
we also aim for a practical setup that uses commonly available
hardware such as laptops and TVs for presenting assembly
instructions. In addition, we utilize a typical smartphone for
tracking the assembly pose, to align the viewpoint shown in
the AR mirror with that of the user.

Our system significantly adds to the state-of-the-art of AR
tutorials, as we are the first to automatically generate compre-
hensible and complete 3D visualizations from video tutorials
containing difficult-to-detect parts and complex object manip-
ulations. In summary, we make the following contributions.

• We introduce a novel approach for extracting complete 3D
assembly instructions from a video tutorial utilizing the

object’s assembly graph to infer otherwise undetectable
assembly steps.
• We introduce a novel visualization technique for assembly

instructions combining 3D animations with video informa-
tion to encompass all information from input video tutorials.
Video annotations provide information on otherwise unde-
tectable manipulations.
• We introduce a practical approach for an AR tutorial setup

using commonly available hardware by utilizing a smart-
phone for object tracking and a monitor as AR mirror.
• We demonstrate the completeness of our extraction and vi-

sualization approach by performing a user study comparing
against typical video tutorials.

Our approach relies on model-based tracking of parts in a
video frame. Hence, it relies on video data of certain quality,
e.g. with large enough depth of field and little motion blur.

RELATED WORK
Due to their spatial anchoring, assembly instructions are ide-
ally suited for AR applications. In comparison to traditional
media, AR systems have been shown to reduce mental work-
load, improve task performance [52] and localization [22].
Users following AR instructions not only benefit from an im-
proved spatial understanding, but also from comprehensible
instruction visualization [25].

Advances in 3D pose estimation and tracking [44, 58] have
opened up new possibilities for scene understanding, and en-
able the design of sophisticated AR assembly tutorial systems.
With this motivation in mind, we introduce an end-to-end
approach to automatically generate AR tutorials from input
videos and apply them to real-world assembly applications.

Video-based Tutorials
Video-based tutorials have not only been proposed for desktop
applications [43], but also for AR tutorials that display 2D
videos overlaid over the AR view to communicate human mo-
tion [28], general task workflows related to real-world objects
[42, 10], or assembly instructions [18]. Goto et al. [18] over-
lay 2D videos prepared in advance over the task work space
using homographies. Petersen et al. [42] overlay automatically
segmented input video directly onto the relevant real-world
objects. However, placing videos on top of objects typically
causes occlusions. Damen et al. [10] avoid this problem by
placing segmented 2D videos next to the instruction area.

While these approaches show the general applicability of regis-
tered videos to visualize instructions in AR, their effectiveness
has not been extensively evaluated. Only Goto et al. [18] re-
port a user study indicating benefits of video overlays, even
though occlusions remain problematic. Furthermore, these
approaches are not applicable to complex assembly structures,
as investigated in this paper.

Augmented Reality Tutorials
AR tutorials register instructions in 3D space directly in a
user’s view, as demonstrated by seminal work in the area of
maintenance and assembly [9, 14]. Early AR systems, such as
Reiners et al. [45] for doorlock assembly or Zauner et al. [60]



for furniture assembly, require parts to be fitted with fiducial
markers for identification, which limited their usability.

Recent approaches avoid fiducial markers by employing novel
CV techniques. For instance, Wu et al. [59] developed an AR
instruction system with markerless tracking based on RGBD
input. Similarly, Wang et al. [55] provided real-time feedback
during an object assembly procedure by using a probabilistic
model to compute the most likely assembly configuration cap-
tured via an RGB input video. Gupta et al. [19] introduce an
assembly tutorial for Duplo structures. The system provides
an authoring and a guidance mode, but is limited by assump-
tions about the structure of the Duplo components, such as the
orthogonality of the assembly direction.

In contrast to previous work, our approach is not limited to cer-
tain object types or classes, but determines complete assembly
instructions of objects, including their small and hidden parts,
by utilizing an assembly graph of the analyzed object. The
system implements a "magic mirror" setup [15], that avoids
the need of specialized display and tracking hardware such as
an AR head mounted display (HMD).

Authoring Tutorials
AR assembly tutorials are traditionally realized using rule-
based systems [14] and scripting languages [8, 29]. However,
assembly instructions can also be inferred from a 3D CAD
model directly [36, 33, 1, 27], for instance, by calculating
blocking relationships and creating an assembly graph con-
taining information about the assembly sequence of all parts.
We integrate assembly graphs into our system to support the
extraction of assembly sequences from input videos and to
identify small or occluded parts.

More recent approaches extract assembly instructions from
existing sources, for instance, by analyzing written manu-
als [37, 48, 47] or video tutorials that demonstrate the proce-
dure. Gupta et al. [19] investigated the creation of assembly
tutorials for Duplo blocks by allowing a user to demonstrate
assembly instructions via a semi-automatic authoring system.
Our approach is related to this category of demonstration-
based authoring and uses video tutorials as input. Using video
as a source expands the applicability of our approach due to
the wide availability of such content in online platforms. In
a recent work, Mohr et al. [38] presented a similar system
that extracts AR tutorials for tools with surface contact. Simi-
larly, our method also extracts instructions from unmodified
input videos, but we broaden the scope to support general
instructions for the assembly of complex objects.

Visualizing Tutorials
Tutorials often utilize animated or video instructions that allow
users to follow procedures when solving a task. These anima-
tions are usually segmented into distinct steps, so that users
can work along at their own pace [18, 19]. The cognitive load
theory (CLT) provides an explanation for the benefits of ani-
mated instructions. It considers the influence of instructional
design and the cognitive architecture on information process-
ing [51]. In the CLT, information processing depends on the
intrinsic nature of the material that must be comprehended
(intrinsic cognitive load) and the presentation of the material

itself (extraneous cognitive load). Both intrinsic and extrane-
ous cognitive load strain the limited working memory [35] of
observers, which affects understanding of instructions. While
intrinsic cognitive load cannot be changed, extraneous cog-
nitive load is reduced by choosing an appropriate instruction
design. A meta-review of Höffler and Leutner [24] revealed
that animated and video instructions outperformed static im-
ages. The effect was stronger for instructions that related to the
acquisition of procedural-motor skills, such as assembly tasks.
Furthermore, findings of Ayers et al. [2] and Wong et al. [57]
indicate that animations are especially suited for instructions
that require observers to follow human movement. While
Höffler and Leutner [24] focus on the benefits of continuous
animations, animations have been found to be more effective
and reduce extraneous cognitive load when presented in logi-
cal segments [5, 49] and when viewpoints of the instruction
and the viewer are aligned [17].

Heiser et al. [21] investigated the design of effective assembly
instructions, which have been successfully applied to auto-
matically create step-by-step instructions [1]. They identified
action diagrams depicting this type of assembly instructions
as preferred representation. An single action diagram shows
the attachment of a major part to an assembly, including the
required smaller parts, such as fasteners. Furthermore, oc-
clusions should be avoided, which may require viewpoint
changes in the instructional visualization. In the initial ori-
entation phase of users, a realistic depiction of the assembly
instructions would be beneficial. Höffler and Leutner [24] also
determined that realistic animations were more effective than
CAD-style animations.

Our system has the goal to reduce extraneous cognitive load
by automatically creating effective assembly instructions from
input videos. Therefore, we adopt the design principles sug-
gested by CLT research to create effective assembly instruc-
tions. Instructions are segmented into steps, so that, in each
step, only a single major part and its fasteners are attached.
Using segmented 3D animations allows users to follow in-
structions at their own pace. We allow free viewpoint changes
to avoid occlusions, improve part visibility and enable users
to align the viewpoint of the 3D instructions with their own
viewpoint. To improve realism, inpainting techniques apply
the texture of the input video to the CAD parts. Additional
details are provided by registering the original instructional
videos in 3D. We visualize the video viewpoint relative to the
3D assembly using a 3D view frustum indicating the view
direction of recorded video. Such viewpoint visualizations
support the spatial orientation of users [53] and communicate
viewpoint locations [13].

DETERMINING THE ASSEMBLY SEQUENCE
In this section, we provide an overview of our system for
generating a free-viewpoint animation. Input to our system
is a video tutorial and a 3D model of the object of interest
(Figure 2a). The 3D model must be structured such that in-
dividually movable parts can be distinguished. Our system
animates each of the parts following the assembly procedure
that is demonstrated in the input video.



Figure 2. Animating the 3D assembly model. (a) Given a 3D model of the object of interest, (b) we construct its assembly graph, (c) and we identify
object parts which are large enough to be detected. (d) After detecting the removal of large parts, we use the blocking information in the assembly
graph to infer the removal of small parts, which cannot be detected otherwise. We use the detected order of removal to generate a 3D animation that
encodes the removal actions as depicted in the video.

Step 1 - Computing the Assembly Graph. We use the as-
sembly graph to support the detection of the removal of assem-
bly parts in the video. To identify unblocked parts that can be
removed, we compute blocking relations between all parts of
the 3D model. We store the blocking information in a directed
acyclic assembly graph (Figure 2b), which represents the parts
of the object as nodes, and blocking relations between parts
as edges. We compute the assembly graph using the approach
presented by Kerbl et al. [27], which detects blocking relations
by analyzing the 3D model of the object.

Step 2 - Extracting the Assembly Sequence. We compute
the assembly sequence from the input video by analyzing the
video frames in reverse order, thus, observing the disassembly
of the object and detecting the removal of object parts. Hence,
inverting the observed disassembly sequence provides us with
the actual shown assembly sequence. For each disassembly
step, we use the assembly graph to identify all currently re-
movable parts in the 3D model (Figure 2c). Then, we compute
the six degrees of freedom (6DOF) pose of the object in order
to project all of its parts into the corresponding video frame.
These projections result in 2D footprints of each part, which
we use to initialize a segmentation-based tracker. To detect a
part’s removal, we project the current removable parts while
tracking the assembly and calculate the probability of each
part’s existence at the location of its expected 2D footprint.
Once a part has been removed, the probability in the corre-
sponding 2D footprint decreases significantly, providing a
reliable measure for removal detection. When a part is de-
tected as removed, we add it to the assembly sequence and
remove it from the 3D model and the assembly graph.

This process iterates, until the assembly graph is empty. How-
ever, since we rely on CV methods, we can only monitor the
presence of object parts that provide a sufficiently large, de-
tectable footprint. Therefore, in each frame, we first test the
detectability of all removable parts by measuring the size of
their 2D footprint in image space. We mark undetectable parts

as potentially removed in the assembly graph, so that blocked,
but detectable parts become removable. Note that we add
an undetectable part to the assembly sequence only after we
detect the removal of a larger part that it blocks.

Since multiple undetectable parts may block a single de-
tectable part, we must determine the correct removal order of
undetectable parts as shown in the video. We infer their re-
moval order by segmenting the user’s hands and tools from the
video and analyzing the positions relative to assembly parts,
assuming they are removed sequentially using hands and tools.

Step 3 - Generating Step-by-Step Animations. Once a com-
plete disassembly sequence has been computed, we generate
visual instructions to communicate the assembly actions. We
generate commonly used assembly visualizations such as mo-
tion lines and 3D animations [40] by translating each part in
the direction where no other parts block the removal. When
multiple directions are possible, we follow the approach of
Li et al. [31] and select the direction that allows the part to
escape the assembly bounding box the fastest (Figure 2d).

Model Registration
Our approach is based on the registration and tracking of an
existing 3D model of the assembly in the video. We aim at
a wide range of assembly tutorials. Therefore, we focus on
common RGB video formats. We make use of an image-based
tracker [44] that tracks the 2D segmentation and the 6DOF
pose of a 3D object simultaneously.

Initially, using GrabCut [46], we generate an object mask MN
of the fully assembled object O at the last frame N of the
input video IN (Figure 3b). Subsequently, we derive the initial
6DOF pose of O from the mask MN . For pose estimation, we
train a convolutional neural network (CNN) with renderings
of O (Figure 3c). In order to remove any misleading color
information, we convert both, the renderings for training and
the segmentation, at run time, to binary image masks. Note
that this is similar to the approach of Wu et al. [58]. However,



Figure 3. Registration. (a) We register the assembly to the last frame of the input video. (b) Our approach uses a segmentation of the object, (c) and
a neural network to derive the camera orientation from the segmentation. (d) Using the estimated orientation we render the object of interest, and
subsequently detect its bounding rectangle. We also compute the bounding rectangle of the segmentation in the input frame, and we derive the distance
of the camera from the ratio of the rectangles sizes. (e) We use the resulting translation and rotation to register the assembly.

in contrast to Wu et al., we estimate the translation separately,
using only the bounding rectangle of the mask MN . We can
detect the translation separately since we can rely on a very
precise mask MN generated by GrabCut. Hence, we focus
the network on the estimation of the rotation only, which
significantly reduces the size of the network and the amount
of data required for training. Our 3DOF pose was trained with
approximately 10% of the training data required for state-of-
the-art 6DOF pose estimation techniques [58].

Rotation. We generate the training data of the network by
rendering the object’s 3D model from various camera positions
on its bounding sphere (Figure 3c). We crop each training
image using the bounding rectangle that encloses the rendering
and subsequently resize it to 224× 224 pixels to match the
size of the CNN input structure. The separation of rotation
and translation allows us to set up a small network. Our
network consists of only five convolution-and-pooling layers
with Rectified Linear Unit (ReLU) activation and one fully
connected layer. The first convolution layer uses a 5×5 kernel,
while other convolution layers use a 3×3 kernel size. After
every convolution, a max-pooling operation down-samples the
image to the half of its size. The loss function makes use of a
standard mean squared error in quaternion space.

Translation. For the full pose, we calculate the translation that
aligns the segmented object mask MN with the mask MR of the
rendered object. We generate MR by rendering O, using the
estimated rotation RN and an initial distance d from the center
of O. We choose an initial distance d so that the rendering
contains the entire object. Both masks represent the projection
of the object under the same rotation and thus show very
similar shapes, while differing in size. To align both masks,
we compute the ratio of the longest edges of both bounding
rectangles, and adjust the translation accordingly (Figure 3d).

Evaluation. Our pose estimator requires only a small set of
images for training and generates results that are sufficiently
accurate to initialize incremental tracking. We demonstrate

this on the LINEMOD dataset [23], from which we used
10,000 images for training and 1,000 for testing. We used
ten objects from the dataset. We excluded symmetric objects
that make our pose estimation ambiguous. We measured the
overlap of the ground truth masks and estimated masks of
a 3D model. The overlap and the standard deviation were
81%(±12), which is substantially larger than what has been
reported for initializing image based pose tracking [44].

Removable and Detectable Part Selection
After we register the 3D model of the object to the video,
we start monitoring its removable parts. We identify remov-
able parts by searching the assembly graph for nodes without
outgoing edges. The resulting list contains all parts that can
potentially be removed from the assembly at the current point
in time. However, some parts contained in this list may not
be detectable in the camera view due to their small size in
image space. Therefore, we determine the detectability of the
parts under observation by computing their footprint in image
space. We remove parts from the list which are too small
to be detected (we consider a part too small if its footprint
is smaller than 25× 25 pixels). Afterwards, we update the
list of removable parts by searching for parts that have now
become removable. We repeat this process, until no footprint
in the list of removable parts is considered being too small.
We repeatedly perform testing the size of the parts under con-
sideration and we re-categorize them when their detectability
state changes. In the rest of this section, we discuss the track-
ing and detection of removable parts that have a sufficiently
large footprint. Smaller parts are inferred from the removal
detection of these larger trackable parts.

Tracking
After we register the assembly and determine its initial 6DOF
pose, our system tracks the rigid 3D assembly using the ap-
proach of Prisacariu and Reid [44]. However, since the ob-
served object is disassembled in a video tutorial, its 3D shape
changes over time. This will eventually lead to tracking failure.



Figure 4. Tracking and removal detection. We generate masks for large
object that we use for tracking by configuring each tracker with all but
the removable part, in addition to the entire assembly. (a) The example
shows the resulting three trackers for two removable parts. (b) From
the input frame, (c) we compute the probability of all tracker and we
use the one with the highest value, i.e. the one without the removed part,
for updating the camera pose. (d) We use the camera pose to project
removable parts (illustrated in red), (e) and we compute the probability
of their existence in corresponding footprints.

To improve tracking stability, we make use of the previously
determined removable parts list. We use multiple trackers, one
for each removable part, and we use the tracker with the high-
est confidence for updating the pose of the entire assembly.

Since the stability of each tracker improves with the number of
pixels covered by the observed object, we aim at maximizing
the footprint of the tracked parts. Therefore, we track the
current assembly without a removable part, instead of tracking
a single removable part in isolation. We apply this approach
for each removable part of a frame, thus, running multiple
object tracker instances in parallel, each ignoring a different
removable part (Figure 4a). One of these trackers will not be
affected by the removal of a part, because the tracked assembly
configuration matches the real configuration after the part has
been removed, thereby improving its tracking stability. To
further improve stability, we cope with hands occluding the
assembly by performing hand and tool segmentation using the
approach of Li et al. [30] and excluding such pixels from the
input frame of the trackers.

Among all trackers, we identify the one that we finally use
for updating the pose of the entire assembly by comparing
their confidence. We derive the confidence from their energy
terms, after pose optimization has been completed for the
current frame. We follow the formulation of the energy term by
Prisacariu and Reid [44], which uses a level set embedding of
the pose, and the likelihood models Pf and Pb. The likelihood
models use color histograms, for calculating the probability
of a pixel x to fall within the foreground region f and the
background b. Note that the smaller the energy gets, the more
confident the estimated pose becomes.

Removal Detection
We infer the removal of a part from the probability of its 2D
projection to cover the part in the video frame. Therefore, we

Figure 5. Sequence refinement. If multiple small parts block a large part,
their order of removal is unknown. To refine the removal order for such
parts, we additionally search for the users hands and tools in the cor-
responding video sequence. (a) We use scaled hand masks to compute
the overlap projection of small parts, and (b) we infer order of their
removal from the order in which the hands overlap the parts. This ex-
ample shows four screws that have been ordered based on the overlap of
the hand masks with the projected footprint of the screws.

project each removable part Ok to image space, using the cur-
rent pose of the assembly, and generate the footprints Ω(Ok)
(Figure 4d). To compensate for hand occlusions, we remove
pixels from Ω(Ok) that intersect with the hand segmentation
Ω(H), i.e., Ω′(Ok) ≡ Ω(Ok) \Ω(H). We skip a frame for a
part Ok if more than n percent of the pixels in Ω(Ok) are oc-
cluded by the user’s hands. We calculate the probability P(Ok)
over all pixels in a footprint of a removable part (Equation 1).

P(Ok) = 1/|Ω′(Ok)| ∑
x∈Ω′(Ok)

(Pf (x)−Pb(x)). (1)

We consider a part to be removed, if its probability P(Ok)
falls below a threshold tremoved . To compute P(Ok) we need
the current foreground likelihood model Pf and background
likelihood models Pb for a pixel at x in the region Ω′(Ok).
Since the likelihood models change over time, we keep updat-
ing them for a tracker if its confidence value is higher than a
threshold ttrack. The results in this paper were generated using
ttrack = 0.70, tremoved = 0.15, and n = 50. Our current imple-
mentation processes input videos at approximately 3 frames
per second (fps) on a system using an Intel Core i7-7700 CPU,
32 GB RAM and an NVIDIA GeForce GTX 1060 GPU. Op-
timizations such as multi-threading can further improve the
performance of the multi-objects tracking and the removal
detection.

Sequence Refinement
After detecting the removal of a larger part Olarge, we search for
the smaller parts that may have not been detected. Since only
unblocked parts can be removed from the assembly, we assume
that any part that blocked Olarge must have been removed
before. Thus, we use the assembly graph to identify all parts
Osmall that block Olarge and that have not been removed yet.



Since multiple parts Osmall may block Olarge, we need to de-
termine the removal order of all Osmall as shown in the video.
We derive this from analyzing the user’s hands movement and
the tools they are using. We assume that the user is removing
a part using a tool or with her hands directly. This allows us
to infer the removal sequence from the locations of the user’s
hands and tools relative to the parts of the object. We compute
the hand and tool segmentation [30], and the footprint of all
Osmall in the frames between the one where we detect the re-
moval of the current large part Olarge and the one where we
detected the previous large part. If no previous part exist, we
start from the last frame of the input video.

We compute the footprint of a part Osmall by projecting its
corresponding 3D model into the video frame using the esti-
mated camera pose. Then, we compute the overlap between a
projected part and the hand and tools masks and assume that
the user is removing the part Osmall with the largest overlap.
If two or more parts Osmall overlap with the same mask, we
group them and show their instruction simultaneously, instead
of consecutively. Figure 5 illustrates our approach.

VISUALIZATION
Generating virtual 3D animations from the input video allows
us to create free-viewpoint instruction visualizations. We use
an interactive AR mirror to align the user’s viewpoint of the
physical object with the virtual 3D instruction view shown
in the mirror. Our setup requires a monitor and a 3D object
tracker attached to the physical assembly to update the virtual
camera during user interaction. Instead of relying on CV
object tracking that is typically error-prone, we make use of
an additional tracking device. Inspired by the approach of
Mohr et al. [39], we use an off-the-shelf smartphone, which
we attach to the assembly to enable its tracking (see Figure 6).

Texturing
To minimize cognitive load, we match the appearance of the
3D model to the one in the video by using pixel colors from
the video and applying them to the model texture. We create
a texture atlas for each part and we fill it by projecting the
pixel from a video frame onto the object using the estimated
camera pose. Since the user’s hands often occlude the object
during interaction, we exclude hand pixels before we use a
frame. Video tutorials usually show the object of interest from
multiple viewpoints. Since we track the camera pose, we can
project video frames onto the 3D assembly to fill the texture
atlas. We only project video frames where an object has been
identified. Some parts may not be visible, in which case we
additionally use an inpainting solution to estimate missing
pixel colors from those within the texture atlas [4] (Figure 7a).

Video Label Extraction
A video label is a cropped video excerpt focusing on the inter-
action with a part. The label is especially useful to communi-
cate actions that are otherwise challenging to visualize in a 3D
animation, such as tool usage or non-rigid object deformations.
In such cases, the video label is able to present direct visual
explanations of interactions. In order to focus the content of
the video label, we remove frames which do not show any
actions, and we crop the remaining frames to the area that

Figure 6. AR visualization. We can utilize a common smartphone for
tracking the object-of-interest, and utilize widely available displays as
AR mirror. In this example, the user follows a video-annotated AR tu-
torial that has been generated from a video tutorial showing the assem-
bly of a motor on a laptop screen. The tutorial includes fastening small
screws and coiling of a wire. We present these operations as video anno-
tations, as they cannot easily be extracted with current CV techniques.

shows the assembly part in addition to the the user’s hands
and tools that have been used to manipulate it. In particular,
we search the video for hands and tools using the feature de-
scriptor presented by Li et al. [30] that we already used for
sequence refinement. We use the result to produce a pixel
mask, which we refer to as the action mask and, consequently,
remove frames where no action masks appear.

To focus on the content of a video label, we calculate the
center cl and the radius rl of the most important area. First,
we detect the contours of parts, hands, and tools [50]. When a
tool and a hand, or two hands have been detected we combine
their masks and treat them as one. Subsequently, we compute
the minimal enclosing circles on each contour. We obtain
the centers of the part and the hand regions as cp and ch, and
the radii of the circles, which enclose the masks as rp and rh,
respectively. Finally, we calculate the video label center cl
and its radius rl using Equation 2 and 3. To stabilize video
label regions over time, we use rolling average filtering for cl
and compute the median of rl throughout the video sequence.
See Figure 7b,c for an example. Our current implementation
calculates video labels at approximately 37 fps (see above for
PC details).

cl = (rl− rp)
ch− cp

||ch− cp||
+ cp, (2)

rl = (||ch− cp||+ rh + rp)/2. (3)

Video Label Placement
We visualize labels as annotations of the object of interest.
They consist of a circular representation of the video and a
thin anchor line which connects the video with the object.

Dynamic placement. We initially placed labels on a plane
in 3D space [54], at the point where the corresponding video
frame was captured from (Figure 8a). However, as a 3D video
label disappears when the user explores the object from the



Figure 7. Texture filling and label extraction. (a) To visually align the
3D animation with the video label we fill the texture of the 3D model by
projecting video pixels from the tracked camera onto the object. (b) We
focus the information in video labels by cropping the input video to the
circle that encloses the user’s hand, tools, and the part that is assembled.
(c) We use the center and radii of the detected part (yellow) and hand-
and-tool (blue) to focus and stabilize the video label region (green).

side or the back, we present the video on a 2D billboard, which
we place on the bounding circle of the object, when the 3D
label leaves a predefined viewing cone (55°) (Figure 8b).

Thus, depending on the current viewpoint, we switch automat-
ically between the 3D and the billboard placement. However,
based on user feedback in a pilot study with three participants,
we decided to update the placement strategy. All users raised
the issue of overlap of the video and the object, when the
virtual camera is aligned with the one in the video in the 3D
presentation. This eventually obstructs their view of the ob-
ject. Even when videos show more information than the 3D
animation, all users mentioned they felt insecure about the
instruction when the 3D animation was not visible anymore.
In addition, all of them commented on the distracting motion
that is introduced by the moving label. This is in line with the
findings of Madsen et al. [32], who study the impact of label
motion on user performance. We initially wrongly assumed
that the 3D placement will allow anticipating label motions
and thus, do not distract.

Static placement. To compensate for label motion and object
occlusion, we refined the placement strategy. We first placed
the label in the corner of the display (Figure 9) and disabled
positional updates. In addition to video labels, we present a
3D cone visualization and a 3D camera icon, which indicate
the 3D camera pose and the field of view that was used for
capturing the video (Figure 8c shows a screenshot that includes
the camera icon and the view cone).

While the static placement was well received in a second pilot
with three users, the position was criticized as being too far
away from the object. Users reported that the distance made
it difficult to look at both, the 3D animation and the video,
simultaneously. Therefore, we kept the static placement but
moved the label center to the point where the object’s up vector
intersects its scaled bounding circle. Our final placement

Figure 8. Label placement. (a) We place the video on a plane in 3D space
using the estimated pose of the video camera. In addition, we render a
3D cone to indicate a predefined field of view and to connect the label
with the object. (b) We show the 3D label only when the virtual camera
is in the field of view. For all other camera positions we project the center
of the label to the scaled bounding circle of the object. This causes the
label to move on a circle around the object when the camera is outside
the viewing cone. (c) Based on user feedback, we refined the placement
strategy. To avoid label motion and occlusions, we place the label on the
object’s up vector, at a fixed distance outside its bounding circle. We
place it close enough to observe both, the 3D animation and the video.
To indicate the camera pose we add a 3D camera icon.

strategy avoids motion and occlusion, and the placement on
the up vector enforces alignment between the object and the
label, therefore bringing the whole content to the user’s view.

EXPERIMENT
We validate the results of our approach to automatically create
step-by-step AR instructions from an input video in a user
study where participants followed these instructions to assem-
ble an object. We compare the extracted AR instructions to the
baseline method of using traditional video tutorials to investi-
gate if our approach generates a complete set of instructions
from the input video. The evaluation also allowed us to col-
lect subjective feedback regarding the usability and cognitive
load of the system. Our AR visualization follows established
guidelines for optimal instruction design and, thus, uses step-
by-step instructions, animations and free viewpoint changes to
reduce a user’s cognitive load. Due to these design guidelines,
we expected the AR condition to be superior to a video tutorial
in a typical assembly task.

Design. We designed a within-subject study with an indepen-
dent variable “instruction method” with two conditions: video
and AR. The video condition corresponded to a video tutorial
without zoom effects or cuts. The video showed the assembly
from a viewpoint defined by the video’s author. As is typical
with current online video tutorials, the video did not auto-
matically pause playback between assembly steps. However,
users could pause the video at any time. In AR, users worked
with the presented AR mirror system. The system paused
automatically at each segmented instructional step, and users
could manually forward by pressing a button on a keyboard.
Furthermore, users could freely change the viewpoint.



Figure 9. Apparatus. (a) In the study, we used a 50 inch screen in front
of the user. (b) Exploded view of the assembly used in the study.

We measured task completion time (TCT), i.e., time to finish
the assembly, total number of assembly errors, cognitive load
as mental effort using the commonly used rating scale of
Paas [41], usability with the System Usability Scale (SUS) [7],
task load using the NASA TLX questionnaire [20], and overall
preference. If not indicated otherwise, numerical values in the
text of this Section are reported in the format “mean (sd)”. For
our study, 16 participants (2 female, X =27.8 (3.85) years)
volunteered. On a scale from one to five (best), the mean of
self-rated AR experience was 3 (sd=1.03, median=3), and the
mean of the handicraft work experience was 2.93 (sd=0.99,
median=3). 6.25% of participants rated AR experience as 1,
31.5% as 2, 18.75% as 3, 43.75% as 4. Hence, the majority
of participants had at least intermediate AR experience. All
participants except one had a computer science background.
One participant had an engineering background and self-rated
AR experience of 3, thus, also experience with AR.

Apparatus. Video and AR condition were displayed on a 50
inch screen. The screen was located in front of the assembly
area. Participants were seated in front of the screen and fol-
lowed the presented instructions. Users had to assemble a car
model with 34 parts attached to a wireless IMU for tracking.
In the video condition, they could interact with the video and
navigate between assembly steps in the AR condition using
a computer mouse and a keyboard with labeled buttons for
video controls. Figure 9 shows the apparatus.

Procedure. After filling out an informed consent form and
demographics questionnaire, participants familiarized them-
selves with the system using a trial assembly. To avoid learn-
ing effects, the object used in the trial task was different from
the one used in the main task. If they were familiar with the
interfaces of both methods, they started the task with one in-
structional method. Participants were instructed to be fast and
accurate. After completing a condition, users filled in the men-
tal effort, SUS and NASA TLX questionnaires and continued

with the remaining instructional method. After completing the
final task, the users filled out the preference questionnaire.

The starting order of the instruction method was counter-
balanced. After assembling half of the car model, partici-
pants continued assembling the car using the other instruction
method. We followed this procedure, because using the same
toy car allows us to generate comparable quantitative data
between both instruction methods. In our study, both halves
of the car have been assembled using both methods an equal
number of times in order to compensate for differences in
assembly complexity. We calculate the overall mean of our
measurements for each instruction method.

Hypotheses. We expected that the AR condition would out-
perform the video condition with respect to TCT (H1) and
total number of errors (H2) due to the design of the system
that takes into account research from instruction design and
CLT. Consequently, we also expected to see better usability
(SUS) (H3), less mental effort (H4), less task load (NASA
TLX) (H5) and overall preference (H6) for the AR condition.

Results. The data was evaluated using a significance level of
0.05. As the data did not fulfill the normality requirements it
was analyzed using Wilcoxon signed-rank tests; effect sizes
are calculated as r = Z√

N
, as proposed by Fritz et al. [16]. The

analysis was performed using the statistics software R.

Wilcoxon signed-rank tests revealed statistically significant
differences in mental effort (video 3.9 (1.9); AR 3.0 (1.0);
Z=2.36, p<0.05, r=0.42), SUS (video 70.5 (14.3); AR 86.3
(8.2); Z=2.9, p<0.01, r=0.51) and the factor temporal demand
of the NASA TLX (video 48.1 (24.3); AR 28.4 (22.1); Z=2.42,
p<0.05, r=0.43). There were no significant differences in
TCT (video 183 (43); AR 182 (51)), error (video 0.6 (1.5); AR
0.5 (0.8)) or raw NASA TLX (video 37 (18); AR 31 (13)).

We checked for differences in assembly complexity between
the two halves of the car by calculating Wilcoxon signed-rank
tests for each instruction method and assembly half. The tests
did not reveal statistically significant differences.

Discussion. We did not find statistically significant differ-
ences in TCT and number of errors. Therefore, we reject H1
(TCT) and H2 (error). However, the subjective results clearly
demonstrate the advantages of our AR system over traditional
video tutorials. We accept H6 (preference), as 100% of the
participants preferred the AR system over the traditional video
tutorial. 62.5% of participants had a self-rated AR experience
above 3. Therefore, this strong preference for the AR condi-
tion cannot be fully explained by a novelty effect, but is an
indicator of the perceived superiority of the AR condition over
video only. Based on the result of the statistical evaluation,
we accept hypothesis H3 (SUS) and H4 (mental effort). The
superior mean SUS score of 87 for our AR system indicates a
usability rating above the average score of 70, that according
to the analysis of Bangor et al. [3] translates into the adjective
“excellent”. Participants also had to invest significantly less
mental effort in solving the tasks using our AR system.

These positive results for the AR condition are underlined by
the qualitative feedback of the participants. As unsolicited



feedback in an unstructured after-study interview, 37.5% of
the participants stated that the AR visualization was easy to un-
derstand and very clear. Furthermore, 50% of the participants
positively remarked on the additional interactivity and view-
point control in the AR condition that it allowed them to better
understand the task and assembly shapes. 19% of the partic-
ipants explicitly mentioned the video annotations and stated
that they were especially useful to understand details of the
instructions, when the 3D rendering was not sufficiently clear.
These observations indicate that our algorithm for extracting
assembly steps and the visualizations work as expected.

We observed that the video inpainting of the 3D parts shown
in the instruction animation supported participants in identi-
fying the corresponding real-world parts during the assembly
task. In the interview, only few participants (12.5%) explicitly
pointed out the advantages of visualizing assembly parts with
the same texture as the real-world parts. However, throughout
the assembly tasks, 37.5% of the participants mixed up two
similarly colored parts, thereby making the same assembly
errors. This clearly indicates that participants used the parts’
visual appearance to identify the subsequent part and high-
lights the value of using inpaining for the 3D visualization.

While we did not find a statistically significant difference in
the NASA TLX, we partially accept H5 as the test revealed
a significant difference in temporal demand. This difference
may be explained by the design of the instructions. 25% of
the participants stated that they were less pressured by the AR
condition due to the presentation as step-by-step instructions
compared to the video condition that had to be paused manu-
ally. In the video condition, participants usually tried to work
at the speed of the video. Hence, the video was subjectively
found to be putting more pressure on the participants than the
step-by-step instructions of the AR condition.

The difference of temporal demand between AR and video in-
structions may also explain the lack of a significant difference
in TCT. According to our observations and the participants’
feedback, in the video condition, participants tried to work
at the speed of the video without pausing it, while they took
their time in the AR condition and investigated the instructions
from different viewpoints. Hence, participants sped up their
interaction in the video condition, while they slowed down
in the AR condition, thus, influencing the TCT. Furthermore,
the lower mental effort for the AR condition indicates that
understanding and following step-by-step AR instructions was
easier than following the video tutorial, even though the latter
could have also been paused on demand.

Overall, the evaluation showed that users were able to com-
plete the tasks with both video and AR instructions. This
indicates that the extracted instructions and generated visual-
izations of our system are complete so that users can follow the
generated instructions without difficulty. One major advantage
of the AR mirror approach lies in the interactive visualiza-
tion of assembly steps most notably of small and occluded
parts. In such cases, video tutorials require zooming in on
small parts, or a change of camera angles, which leads to a
mismatch between the user’s view of the real-world object
and the video’s viewpoint. Videos are also often edited to

cut between viewpoints, which requires additional mental ro-
tations from the viewer. The interactive viewpoints of AR
facilitate this reorientation as is indicated by the user feedback
and the decreased mental effort. In addition, the 3D animation
of the assembly instruction naturally avoids occlusions, e.g.,
by hands or tools. A future study should isolate the impact
of these factors by controlling occlusions in the video and by
controlling viewpoint discrepancies between video and the
real-world object.

The usability of the video condition was rated as 70.5 (SUS),
which corresponds to average usability and the adjective
“good” [3]. This shows that the video condition was perceived
positively despite its limitations. Usability could likely be
improved by segmenting the video like in the AR condition.
We noticed that participants rarely used the pause button of a
video. This is in line with the results of Biard et al. [5], who
additionally showed that users performed better when videos
were automatically pausing between steps. Interestingly, par-
ticipants did not remark upon such a feature for videos in our
unstructured after-study interview but requested additional AR
features such as more animation control (e.g., speed), or a
preview of next steps. However, although segmented video
instructions may improve in terms of temporal demand, par-
ticipants would still be required to mentally align the video
viewpoint with the real object and the video would suffer from
occlusions (e.g., by the author’s hands), both of which may
contribute to increased mental effort. A future study should
isolate the effect of instruction segmentation for videos on the
task performance when compared to the AR mirror system.

CONCLUSION AND FUTURE WORK
We showed that our approach successfully extracts assembly
instructions from video tutorials. Given only a video recording
and the object’s 3D model, we infer the object’s assembly steps
in their correct order. We take inspiration from the technique
of assembly-by-disassembly and parse input videos from end
to beginning to facilitate object extraction. Furthermore, we
utilize the object’s assembly graph to identify the manipulation
of small or occluded parts. We evaluated the completeness
of the extracted instructions in a user study that demonstrated
that users were indeed able to follow the generated instructions
and to complete the assembly tutorial.

In the following, we enumerate a series of design recommen-
dations for visual instructions of retargeted videos. Generally,
our AR mirror instruction visualization caused less mental
effort and, thus, cognitive load, than a common video tuto-
rial. This is a result of grounding our design in findings from
current state-of-the-art: (1) we show assembly instructions
segmented into step-by-step animations that are shown at a
speed chosen by the user [5, 49], (2) we allow users to con-
trol the viewpoint of the instructions so that they are always
aligned with the corresponding real-world object [17] and
can be used to resolve occlusions or to reorient during the
task [21]. We add to the current research, as we are the first to
introduce (3) video annotated AR instructions combining free
viewpoint navigation and detailed instruction visualization.
Video annotations are essential to capture assembly steps that
cannot easily be extracted with current CV algorithms (e.g.,



tool usage, complex assembly motion, non-rigid object defor-
mations), while AR instructions enable aligning the viewpoint
of the real-world assembly with the visualization. Further-
more, our user study clearly showed that color is a strong cue
during users’ visual search for the next assembly part [56].
This aspect needs further investigation in the context of video
retargeting, as (4) video texturing is a useful tool to visually
align the virtual 3D instructions with the real-world scene
and, thus, facilitates visual search. However, a future system
must consider visually similar assembly parts and provide au-
tomatic guidance to resolve similarities of color and/or shape
that could lead to assembly errors.

In addition to generating and evaluating instructions, we pre-
sented a feasible implementation of a real-time AR mirror
tutorial system that allows home users access to these instruc-
tions. Our system requires only commonly available hardware,
such as a consumer desktop PC to display the visualisation,
and a mobile phone that enables object tracking by attaching it
to the object of interest. As future work, we plan to provide a
web-based interface to allow content providers and consumers
access to the video extraction software and the AR mirror
system. This allows us to collect test data that follows the
guidelines above to produce videos suitable for our approach
for further analysis, and will in the long term push online
tutorials to the next level.

Our approach is aimed at processing detailed assembly videos.
Currently our system can process videos that show objects
that are continuously manipulated in a series of video frames
without interruptions. While cuts in the video can be handled
by reinitializing the object tracking, stop-motion sequences
or slideshows will require frequent reinitialization, which de-
creases usability. Furthermore, while our system can detect
small parts, it relies on the trackability of larger parts. For
optimal detection results, content providers should take care
of appropriate lighting, improving contrast to the background
and calibrating the recording camera. However, we believe
that these simple guidelines are easy to follow by professional
video content providers and can stimulate the generation of
interactive 3D tutorials. Our system currently does not use
audio information from the video. However, a combination of
extracted video annotations and voice overlay could further
enhance the presented information. The audio track could also
be used to focus the automatic detection of assembly steps by
recognizing audio related to certain objects or tasks.

Currently, our system uses 3D models of the assembled object,
required for calculating an assembly graph. Such detailed
models are often available in the do-it-yourself community
(e.g., 3D printing), are provided by producers or may be crowd-
sourced. In the future, 3D models could also be inferred from
the video itself. Many objects that require assembly are com-
posed of standardized pieces. In such a case, once an object is
detected in the video frame, its 3D model could be retrieved
from an object database.

Overall, our work presents a novel method to make the genera-
tion of intuitive 3D assembly instructions feasible for providers
of assembly video tutorials. By relying on commonly avail-
able hardware, our AR mirror system also lowers the threshold

of accessing these 3D instructions, thereby making them avail-
able to a wide audience.
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