
State-Aware Configuration Detection
for Augmented Reality Step-by-Step Tutorials

Ana Stanescu 1* Peter Mohr 1 Mateusz Kozinski 1 Shohei Mori 1 Dieter Schmalstieg 1,3 Denis Kalkofen 2,1†

1 Graz University of Technology 2 Flinders University 3 VRVis

Figure 1: Image-based configuration detection enables automatically progressing augmented reality tutorials based on user
performance. To robustly distinguish between object states, we introduce (c) a state-aware neural network, which is trained using
(a) a state graph in addition to images that show the object configurations. State-aware configuration detection improves existing
approaches by incorporating the possible configuration order, which is given by the structure of the state graph. (b) We integrate our
method into an augmented reality system to detect the object configuration of step-by-step tutorials in real time. (d) This enables
presenting an interactive visualization of the state graph, which automatically selects the current task (shown enlarged).

ABSTRACT

Presenting tutorials in augmented reality is a compelling application
area, but previous attempts have been limited to objects with only
a small numbers of parts. Scaling augmented reality tutorials to
complex assemblies of a large number of parts is difficult, because
it requires automatically discriminating many similar-looking object
configurations, which poses a challenge for current object detection
techniques. In this paper, we seek to lift this limitation. Our ap-
proach is inspired by the observation that, even though the number of
assembly steps may be large, their order is typically highly restricted:
Some actions can only be performed after others. To leverage this
observation, we enhance a state-of-the-art object detector to predict
the current assembly state by conditioning on the previous one, and
to learn the constraints on consecutive states. This learned ‘con-
secutive state prior’ helps the detector disambiguate configurations
that are otherwise too similar in terms of visual appearance to be
reliably discriminated. Via the state prior, the detector is also able
to improve the estimated probabilities that a state detection is cor-
rect. We experimentally demonstrate that our technique enhances
the detection accuracy for assembly sequences with a large number
of steps and on a variety of use cases, including furniture, Lego and
origami. Additionally, we demonstrate the use of our algorithm in
an interactive augmented reality application.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented re-
ality; Computing methodologies—Machine learning—Learning
settings—Learning from demonstrations

*e-mail: ana.stanescu@icg.tugraz.at
†e-mail: kalkofen@icg.tugraz.at

1 INTRODUCTION

Showing visual assembly instructions directly in place is a powerful
use case of Augmented Reality (AR). It overcomes the need for men-
tally complex hand-eye coordination when following instructions
presented on traditional 2D screens [4], as real and virtual objects
can co-exist within the AR space. The ability to show visual instruc-
tions registered in 3D to the physical object can significantly reduce
the cognitive load required to follow instructions [8, 12]. Early sys-
tems required the user to manually advance to the next step in the
tutorial [42]. However, the need to confirm the completion of every
step is generally perceived as inconvenient or even distracting. Users
prefer that any object manipulation, e.g., assembly, disassembly, or
repositioning of parts, automatically triggers feedback, either by
advancing to the next instruction, or by pointing out wrong actions.

Such automatic instruction triggering requires the capacity to
detect the current assembly state. Contemporary approaches to
state detection rely on analysis of depth and shape [11, 32], tem-
plate matching [34], or visual 6DOF object tracking [40]. However,
even state-of-the-art object detectors struggle when trying to distin-
guish similar configurations, which only differ in a single part. The
problem is exacerbated when the number of states that must be dis-
tinguished grows. Consequently, previous real-time state detection
methods were limited to rather simple assemblies with only a few
large parts and easily observable differences between states.

Our goal is to lift this limitation and make state detection scale
to objects composed of a large number of small parts and complex
assembly procedures with many steps. To achieve this goal, we
take advantage of the fact that the space of assembly states is highly
structured. We formalize our idea by representing the state space as a
directed acyclic graph, with nodes corresponding to states and edges
corresponding to actions (Figure 1). For disassembly, the direction of
the edges is simply inverted. An assembly graph encodes constraints
on exploring the state space: If a pair of states is not connected with
an edge in the graph, the second state cannot be attained from the

first one with a single action.
Consequently, being able to distinguish between the complete set

of states is typically not necessary – if the previous assembly state
is known, and state recognition is fast enough to observe the user’s
actions in real time, only the previous state and its direct descendants
in the assembly graph must be considered. In Figure 1, given the
previous state 4, visual recognition can be limited to distinguishing
between that state and its neighbors, giving a three-element set of
candidate states {3,4,5}, as opposed to the ten-element set of all
assembly states. In non-trivial assemblies, the total number of states
can rise exponentially with the number of parts, while only a small
number of different parts can be installed at any given state.

In practice, instead of imposing predefined constraints on possible
pairs of consecutive states, we propose to learn the relations between
consecutive states from data. We explore this idea by conditioning
a state-of-the-art object detector, YOLOv7 [35] on the previously
observed state. We integrate the learned representation of the previ-
ous state into the architecture of the detector by enhancing it with
the context of the current image and adding it to the feature map
just before the classifier head. To minimize overfitting, we apply
dropout [31] to the previous state representation when training the
conditional detector.

While we motivate our conditional detector with the need for
detecting assembly states, it is not limited to assembly procedures
or rigid objects. We show that our work can be deployed in any AR
tutorial that relies on a procedure involving recognizable physical
states. We evaluate our work on the state-labeled dataset used in the
approach by Liu et al. [14], and contribute three new data sets, Lego,
Origami, and Engine Block. Our experiments demonstrate that,
when the number of states becomes large, our detector consistently
outperforms plain visual recognition. At the same time, it is as easy
to train as the purely visual baseline and attains nearly the same
frame rate at test time. This level of performance allowed us to
create a HoloLens 2 application demonstrating guidance for folding
Origami and completing Lego constructions. In summary, our work
makes the following technical contributions:

• A new approach to assembly state detection by conditioning on
the previous state,

• An evaluation of several methods to incorporate the previous state
representation in the detector architecture,

• Three data sets of complex assembly sequences, and

• A practical demonstration of our state detector in a real-time AR
application.

To our knowledge, we propose the first assembly state detection that
does not only rely on visual recognition, but also implicitly learns
information to use the state space structure in a neural network.

2 RELATED WORK

Our work contributes to the state of the art on interactive AR tutorials.
By identifying the current state in a procedural tutorial, an AR
visualization can be automatically adapted. Such a detection of the
current state is a variant of object detection, i.e., detecting a state
corresponds to detecting an object as a particular configuration of
parts. Therefore, we review previous work on authoring AR step-by-
step tutorials with a focus on state detection and image-based object
detection for real-time applications.

2.1 Step-by-step tutorials
Early work on 2D video tutorials demonstrates the importance of
temporal segmentation and automatic progression to guide a user
through the steps of an image manipulation tutorial [26]. Later,
Petersen et al. [24, 25] presented an approach for authoring step-
by-step instructions using video segmentation for AR applications.

By training classifiers on the segmentation result, the approach is
able to follow a user’s performance. Damen et al. [7] extend upon
video segmentation by providing additional information about the
actions required in each step. While approaches to automatic video
segmentation have been used to observe a user’s progress, it is
typically necessary that the user assume a camera pose similar to the
one used during training to understand the instructions.

Such viewpoint restrictions imposed by 2D video tutorials can
be overcome in AR by presenting the visual information in 3D.
Examples include approaches to authoring 3D tutorials from im-
age [21, 23, 36] and video data [22, 40]. However, these approaches
process their input data sequentially in an offline manner, which
makes them unsuitable for real-time state detection.

With 3D tracking, one can overcome the view restrictions of
approaches based on 2D video. Some approaches provide such
tracking by instrumenting all parts of an assembly with fiducials [29,
38, 42]. By tracking both the user and the manipulated parts in 3D,
a tutorial can be created from a user demonstration [5]. Alas, the
requirement of fitting every part with a fiducial is cumbersome and
unsuitable in many situations.

2.2 State detection

The key to step-by-step AR tutorials with automated user feedback
lies in detecting the current state and suggesting the next known step
based on procedures configured in advance (e.g., with an assembly
or state graph). The procedures can be defined in a desktop tool [40],
in AR space by tagging objects [5, 27], or by demonstrating the
procedures [16, 32]. Given such a set of predefined object config-
urations, the system must know the current configuration of the
observed object. Approaches that offer assembly guidance without
state detection require the user to manually transition to the next
state [18,40,44]. We do not further discuss these manual approaches.

An early work by Gupta et al. [11] evaluates the color and struc-
ture of Duplo pieces to identify when to advance to the next state
automatically. This work was one of the first to use state detection to
monitor the user’s performance in a tutorial. However, their method
is only suited for Duplo bricks, as it assumes that the geometric
structure consists of blocks that have the exact dimensions of Duplo
bricks. Similarly, Miller et al. [20] guide the assembly of objects by
precisely fitting an object into a voxel grid. Wu et al. [39] propose an
interactive system that can detect states via RGB-D object tracking.
According to a predefined assembly graph and two object-relative
poses, the system suggests the next step. Wang et al. [34] estimate
the upcoming step based on a posterior probability with a given cur-
rent state. This formulation does not support multi-part assemblies.
Bhattscharya et al. [2] use traditional computer vision algorithms to
identify assembly states via point clouds. This approach restricts the
partial assembly to be fixed in the environment.

To overcome the issues in classic computer vision, recent ap-
proaches rely on neural networks. The method by Liu et al. [14] intro-
duces an attention-based module integrated into Faster-RCNN [30]
to distinguish state objects. They show the performance of their
network on two objects, a table and a fender object, each having
only a few parts. Also, their approach uses synthetic data for training
and captured data for testing. Another method by Zhou et al. [43]
focuses on significant regions of interest. Their approach is based
on extracting multiple regions of interest after a complex prepa-
ration procedure involving the pre-training of the interest regions.
At runtime, the neural network classifies regions that have been
re-identified into object states. The observed viewpoints must be
similar to the onesof the recordings. Less than 20 states are handled.

In comparison to all the methods above, we aim to detect complex
object configurations (e.g., over a hundred states), as well as to allow
for any kind of discrete states, not just rigid objects.

Figure 2: Overview. (a) A user with an AR headset observes a working area containing the object to be manipulated. While the object’s
configuration changes through various states, a video is captured with a head-worn camera and streamed to a server. The server detects the
current state and generates a feedback visualization indicating the actions requires to follow in the current (and if available in the next) step. (b)
Our method learns to robustly detect object states from the camera stream by incorporating the state graph of the corresponding step-by-step
tutorial. (c) This enables to select the tasks to perform in each step, (d) it allows to confirm the correct result of a given task, and (e) it enables to
show when the user chooses to perform an alternative step within the state graph.

2.3 Object detectors

In order to suggest future assembly actions, an AR tutorial system
needs to detect the workpiece and recognize its assembly state. We
address this problem as an instance of object detection, a classical
computer vision task. The task is, therefore, to predict a bounding
box and a class label for each object present in a test image. The
technical challenge behind object detection stems from the number
of objects not known a priori and potentially many overlaps between
bounding boxes corresponding to different objects. One way to
approach this problem is to separate the generation of hypothetical
bounding boxes from the classification. For example, R-CNN [10]
and Fast R-CNN [9] use a deep neural network to classify image re-
gions extracted with a selective search algorithm. Faster R-CNN [30]
improves these approaches by integrating both tasks in a single deep
architecture that extracts candidate bounding boxes and instantly
classifies them. An alternative approach is to forgo predicting the
bounding-box candidates in favor of a large but fixed set of candi-
date locations uniformly covering the image. For each candidate,
YOLO [28] predicts how likely it is to represent an object, its class,
and a displacement between the candidate bounding box and the one
tightly circumscribing the object. The correction to the bounding
box coordinates is predicted simultaneously with the object class,
which contributes to the efficiency of this algorithm. We rely on
YOLOv7 [35], an improvement of YOLO that is widely used, fast at
test time, and easy to train. As described in Section 3, we enhance it
to condition the predicted assembly state on the previous state and
to make it learn the constraints on consecutive states.

3 METHOD

AR tutorials are typically organized in terms of the states of the
procedure the user is trying to accomplish. For example, when
folding an Origami bird, two adjacent states can be ‘wing folded’
and ‘wing unfolded.’ The instructions displayed to the user depend
on the current state. In the ‘wing unfolded’ state, the system would
advise the user to fold the wings, whereas in the ‘wing folded’ state
the instruction might ask to ‘fold the beak.’ User actions, such as
folding the wing, cause state transitions. Upon detecting the new
state, the AR system should update the instruction. We show an
overview of our proposed method in Figure 2.

3.1 State graph

State detection is complicated by the fact that, in real procedures,
the number of states may be very large. This observation is espe-
cially true for assembly tasks, where actions consist of installing
or removing parts from the assembled object. In this case, the total
number of states is lower-bounded by 2k, where k is the size of the
largest subset of parts that can be installed independently from one
another. We claim that this difficulty can be alleviated if the current
state is known, because the number of states that can be accessed
from the current state with a single operation is typically small.

To make our argument more formal, we represent the structure
of the state space in the form of an assembly graph G = (V,E),
where the vertices v ∈V are assembly states and an edge (v,v′) ∈ E
connects nodes v,v′ ∈V if there exists an assembly action that takes
the procedure from state v to state v′. Since a single action can only
advance the procedure from the previous state to one of its neighbors
in the graph, the knowledge of the previous state, the predecessor
v0, can greatly facilitate recognition of the current state.

More formally, the set C of candidate states has to be considered
as C(v0) = {v0}∪ v′ s.t. (v,v′) ∈ E}. In the case of assembly tasks,
for any v ∈ V , the cardinality of C(v) is upper-bounded by the
number of parts n since each action available at state v either installs
a part not yet included in the assembly, or removes a part installed
before. The set of candidates is therefore smaller than the set of all
states V which grows at least linearly, but typically exponentially,
with the number of parts. In real applications, the set of candidates is
much smaller than the number of parts, because installing some parts
requires others to be in place and not all combinations are physically
possible. Therefore, knowledge of the previous state greatly reduces
the uncertainty of the current one. Of course, this expectation only
holds when no more than one action can be completed between
consecutive state detections. Fortunately, this assumption is satisfied
in practical AR scenarios.

To make the knowledge of the previous state benefit the detection
of the current one, we design an assembly state detector that condi-
tions its predictions on the previously observed state. We describe
its architecture, the training procedure, as well as an example AR
application in the following sections.

Figure 3: Network architecture. (a) We augment the YOLOv7 detector [35] to condition the assembly state detection on the previous state. The
standard YOLOv7 architecture is shown in grey, and our modifications are highlighted in red. We use our StateVec module to inject the encoding
of the previous state into the feature map between the ‘neck’ and the ‘head’ of the architecture. We experiment with two different forms of the
StateVec module, (b) one that learns the representation of the previous state directly, (c) and one that enhances the learned representation with
the context of the image, by concatenating the representation with image features and passing it through a multi-layer perceptron (MLP).

3.2 Detector architecture
As a starting point, we chose YOLOv7 [35], a state-of-the-art deep
neural network for object detection from images. Our choice was
guided by its high frame rate and availability in the ONNX.AI stan-
dard for deployment on mobile devices. The high-level architecture
of the entire family of YOLO detectors, represented in grey in Fig-
ure 3a, consists of three subnetworks: the backbone, the neck, and
the detection head [3]. The backbone extracts features from the
image, the neck aggregates features at different resolutions, and the
head produces predictions for individual bounding-box candidates.
To make the detector conditional on the previous state, we follow
the late-fusion approach [33] and inject the representation of the
previous state before the head sub-network, as highlighted in red
in Figure 3a. The rationale is that, at this stage of the architecture,
features represent high-level information about image content, and
information about the previous state is at a similar level of abstrac-
tion. Each stage of the network processes features at three different
resolutions, represented in Figure 3a by the horizontal arrows, and
we inject the previous state into each of the resolution levels.

Injecting previous state into the network. We design a deep
network layer StateVec to introduce the information of the previ-
ous state into a feature map φ , the output of the ‘neck’ of the deep
network. φ is a table of width W and height H, which depend
on the size of the input image. Its entries φwh are feature vec-
tors of length n f , typically 128, 256, or 512. For each (w,h), s.t.
0 < w < W and 0 < h < H, φwh represents a rectangular region
of the input image, centered at pixel w0 + wsw,h0 + hsh, where
the offsets w0,h0 and strides sw,sh depend on the details of the
architecture. Our goal is to produce previous-state-aware features
φ ′

wh by injecting into φwh a learned representation of the previous
state, denoted r(v0). For compatibility with φwh, we give r(v0) the
form of a vector of length n f . We denote the injection operation as
φ ′

wh = g(φwh,r(v0)). Inspired by previous work on fusing non-visual
information into convolutional neural networks, given classes that
are visually similar [6,17,33,41], we test two forms of g: the additive
g+(φwh,r) = φwh+r, and the multiplicative g∗(φwh,r) = φwh ◦σ(r),
where ◦ denotes the element-wise product, and σ is the sigmoid
function. g+ can be interpreted as the simplest way of inserting
information into a feature, while g∗ can be thought of as attenuating
selected feature components.

Representing states. In the basic version of our approach, we
simply learn the previous state representation r(v0) for each v0 ∈V .
To this end, we parameterize the StateVec module with a matrix R
of size |V |×n f and make each of its rows represent one state. The
previous state v0 is encoded as a one-hot vector, and the state repre-
sentation is computed as r(v0) = v⊺0R. This approach is presented
in the Figure 3b. In addition to the basic approach, we also experi-
mented with enhancing r(v0) with the context of the image before
injecting it into the feature map. We implemented this enhancement

in the form of a shallow network m that concatenates r(v0) with
φwh and propagates the resulting vector through a fully connected
network with one hidden layer, yielding a context-enhanced repre-
sentation of the previous state r′(v0) = m(r(v0),φwg). We illustrate
this approach in Figure 3c.

3.3 Training the detector
The standard YOLOv7 is trained on a data set of pairs (x, ŷ), where
x denotes the input image and ŷ is the corresponding ground truth.
Since we extended the detector to condition on the previous state
v0, we also needed to augment each training sample to contain the
previous state, yielding a training set of triplets (x,v0, ŷ). In theory,
to simulate test-time conditions, v0 should be computed by running
the detector on a sequence of frames preceding x in the training
recording. In practice, this approach is very memory-intensive and
time-consuming.

In the interest of efficiency, we adopted a simplified training pro-
cedure, in which we set v0 to the one-hot vector representing the
correct class of the previous frame. This is shown in Figure3b and c.
Since the number of edges in G can be large, and the assembly proce-
dure can be completed without traversing every edge, a large number
of recordings may be needed to observe each valid combination of
the previous and current state for a sufficient number of times. We
therefore augmented the training set by creating additional samples
for every graph edge corresponding to the transition from v0. We
then perform training in a similar way to the standard object detector
with the images with the ground truth bounding box and class labels
(current state), while the previous state is being fused right after the
YOLOv7 neck, as shown in Figure 3a. We do not modify the loss
function of YOLOv7, which is the weighted sum of the box loss,
object loss and class loss. During inference, just the image input and
the previous state are needed.

In order to prevent overfitting we also apply dropout [31] to the
state representation. We implement it by randomly skipping the
StateVec module with a pre-defined probability for each training
example. It forces the network into learning to utilize the visual
information to the full extent in order to minimize the loss for the
examples having their previous state suppressed.

3.4 Use of the detector in an AR application
Our overall goal is to integrate the state detector into an AR tutorial.
To that end, we implemented an AR step-by-step tutorial application
that runs on a HoloLens 2 headset, showing an interactive visualiza-
tion of the state graph (Figure 1). The application is implemented
using the Unity game engine. The headset client streams images
over the local wireless network to a desktop computer, where the
live state detection is running.

While the user steps through the tutorial, the next step is automat-
ically highlighted by increasing its size and changing its position
into focus. The next state is visualized either by pre-captured video

Figure 4: Datasets used in our work. We generate images and state graphs of several step-by-step-tutorials for training and testing our method.
Samples are shown from the (a) Origami and (b) Lego flower synthetic datasets. We generate both synthetic and captured data. Synthetic data is
automatically generated by rendering an object from several points of view while gradually disassembling it. We capture real data either using (c) a
multi-camera rig, or (d) from a first-person perspective with the HoloLens 2 headset. (e) The data we use spans a range of complexities in terms
of assembly graph, from 6 states for the Ikea table (top), to 106 states for the Engine block dataset (bottom).

snippets [40] or by images. If the user has transitioned to a new state
in the assembly graph that is not part of the highlighted path, the
visualization adapts to this choice and changes the path, showing the
next instruction corresponding to what the user did.

Our method for detecting the current assembly state relies on the
knowledge of the previous state. Since at runtime we need to confirm
the state to update the visualization, we refine the prediction by a
majority voting of the last predictions. The state with the highest
number of votes is considered ‘validated’ if its number of votes
exceeds a threshold. We set this threshold to the number of frames
observed in one second. From the moment of validation onward, the
previous state will be fed to the network for the next prediction, and
the next state is displayed by the interface as a task for the user. The
neural network is running on a desktop PC communicating with the
headset over the local network. If the state has changed, the new
state is sent to the headset client, and the visualization is updated.

4 EVALUATION DATA

A range of other datasets contain objects to be assembled. For ex-
ample, the dataset introduced by Wang et al. [37] contains synthetic
3D models of IKEA furniture. Although this is a comprehensive
resource for synthetic data, the parts are labeled separately. Ben-
Shabat et al. [1] offer a real-world dataset of IKEA furniture where
the labels consist of bounding boxes of the object parts, as well as
segmentation masks for the parts. In both cases, manual labeling of
states would be required to use state priors.

In contrast, in our work, the labels are object states, for example,
an engine before and after a valve is removed. The states can be
partially inferred from the presence of individual parts in the frame,
but, in case the parts are not fully present and occluded, then they
can be disambiguated only with additional knowledge. Liu et al. [14]
use a state-labeled dataset comprised of two objects, a table and a
fender object. Since the labels are object states, we use a part of this
data in our work to evaluate our approach. We aim to also create our
own data similar to this dataset, but with more complex objects and
state graphs for evaluating our method.

The state graphs of the datasets that we use are not complete;
they do not contain all the physically possible states, although our
approach could be used with such graphs as well. We assume that
the collected data results from some preferred or demonstrated ways
of going through the states. Moreover, in practice, there usually exist
limitations based on physical constraints, e.g., one part cannot be
physically removed before another part. Nevertheless, we do assume
that, from any given state, there can be a transition to multiple states,
leading to a directed acyclic graph and not a simple list. State graphs
could be created automatically through disassembly planning [13].

Table 1: Details about the datasets used for evaluation.

Dataset Samples States Synthetic
Lego flower synthetic 1170 45 yes
Lego flower real 1296 45 no
Lego flower real extended 1557 45 no
Ikea table 773 6 no
Origami 4128 10 no
Engine block 8162 106 yes

For evaluating our method, we chose datasets of different origin.
While the Ikea table dataset [14] represents furniture that is a com-
mon use case for AR assembly instructions, we also use Lego bricks
for their high versatility. Furthermore, we use an origami dataset to
demonstrate that our approach is not limited to rigid objects and a
synthetic dataset showing CAD renderings of an engine block.

4.1 Captured datasets
Lego flower. To collect real data sets, we built a capture stage

(Figure 4) consisting of a custom rig that holds a ring of 12 cameras
observing the working area. The rig captures an assembly procedure
simultaneously from many viewpoints. Our method does not depend
on this kind of data capture, but using it significantly accelerates
data capturing, especially when dealing with objects having a large
number of states, since it captures multiple viewpoints, so a larger
quantity of data at once.

We asked multiple test subjects to follow the AR tutorial for
assembling the given object. Instructions are displayed on a tablet
placed next to the capture stage, where users can manually navigate
the written instructions, generated from 3D models with the Lic
tool1. We vary the assembly sequences that we show to the users, in
order to build branches in the state graphs of the objects from the
recorded datasets. The Lego flower extended dataset just varies in
terms of test set, that contains additional recordings.

The Lego set is highly configurable, allowing us to create and
extend the state graph with multiple paths. Moreover, Lego bricks
are easily confused. A conventional object detector might not be
suitable to discriminate, for example, two 2×2 bricks of the same
color placed next to each other from a single 2×4 brick of the same
color, or an object configuration where the same part is present at
multiple positions. Using state detection can help in disambiguation,
since the state takes into consideration not only the presence, but

1www.bugeyedmonkeys.com/lic/

also the absence of a part, implicitly using the appearance of the part
underneath to discriminate between states.

Origami. Additionally, we captured first-person recordings with
a HoloLens 2 for our dataset of an Origami bird. The Origami use-
case shows that we are not limited to assembly tasks or rigid objects.
Another aspect that we consider in this dataset is the presence of
hands. Origami is the only dataset that has the hands included, so the
bounding boxes can contain the user’s hand, leading to occlusions,
as shown in Figure 4a.

For data labeling of our captured data, we use a rough bounding
box proposal of the object, which we then manually check and
refine. The initial bounding boxes are obtained either via color
segmentation or by an object detector, GroundedDINO [15], working
on descriptive text prompts. We then manually adjust incorrect
boxes (imprecise, false negatives, false positives) and add the states
as labels.

4.2 Synthetic datasets
Lego flower synthetic. For testing our detector under more

controlled conditions, we generated several synthetic datasets in ad-
dition to the real ones. Synthetic datasets allow us to train on a large
amount of data without having to perform manual annotation. We
create a synthetic Lego dataset with the same states as the captured
Lego flower using Mecabricks2, LeoCAD3 and Blender4, followed
by rendering synthetic frames in Blender. We use Python scripts to
render a set of camera views for each state, with the camera being
placed at viewpoints on a half-sphere around the object. Along with
the images, we also render binary masks indicating where the object
occupies the image, letting us automatically compute the objects’
bounding boxes and perform automatic data annotation. A tutorial
sequence is easily exported as a list referring to parts using the same
names as in the Blender scene graph.

Engine block. Additionally, we created a synthetic dataset of an
engine block 5 with more than 100 states. To create multiple datasets
representing varying state graphs, we built a Unity application which
lets the user interactively specify a disassembly sequence. Unlike
the synthetic Lego flower, the engine block contains self-occluding
parts. Including states where the important differences are occluded
would confuse the network. Hence, we compute the visible parts
and suppress the samples where no difference between the previous
and next state is visible. This approach reflects what humans do
when they turn the object until the relevant part comes into view.

5 RESULTS

We tested our approach using our own captured and rendered data,
and the data used in the approach by Liu et al. [14]. An overview of
the data we use to evaluate our method can be found in Table 1. We
compare to the original YOLOv7 detector as a baseline.

Each model is trained per object, where the object states are
the classes. While never tested, the model can also be trained for
multiple objects at once, but this may need additional considerations
to define state transitions between different objects.

Setup. We evaluated our work on a desktop PC (GPU: NVIDIA
RTX 4090, CPU: Intel Core i7 with 32 GB of RAM). Our imple-
mentation is an extension of the YOLOv7 codebase6. The inference
runs on our hardware at an average of 33.7 ms/frame, i.e. 30 frames
per second. For our experiments, we trained our detector, StateY-
OLO, each time for the same number of iterations with a batch size
of 20 samples. We made sure to shuffle the data for each training

2www.mecabricks.com
3www.leocad.org
4www.blender.org
5https://grabcad.com/library/rotax582-c-1
6https://github.com/WongKinYiu/YOLOv7

Table 2: Experiments on variants of the proposed architectures of
our module on the Flower Synthetic dataset with and without dropout.
The highest scores and higher scores than the original YOLOv7 are
highlighted in bold fonts and underlines, respectively.

Architecture Dropout P R Acc mAP mAP
0.5 0.5:0.95

YOLOv7 - 0.850 0.940 0.792 0.906 0.906

StateYOLO-add yes 0.848 0.951 0.812 0.94 0.94

StateYOLO-mul yes 0.836 0.925 0.777 0.896 0.896

StateYOLO-MLP-add yes 0.868 0.943 0.804 0.917 0.917

StateYOLO-MLP-mul yes 0.830 0.917 0.757 0.887 0.886

StateYOLO-add no 0.890 0.942 0.857 0.936 0.936

StateYOLO-mul no 0.783 0.906 0.729 0.882 0.87

StateYOLO-MLP-add no 0.871 0.936 0.800 0.917 0.917

StateYOLO-MLP-mul no 0.849 0.932 0.786 0.907 0.907

procedure. For all our experiments we started with the weights pro-
vided with the YOLOv7 codebase, pre-trained on the COCO dataset,
which we then fine-tuned on our own data. In our experiments, we
use a drop-out rate of 0.5. We made sure to shuffle the data for
each training procedure. For all our experiments we started with
the weights provided with the YOLOv7 codebase, pre-trained on
the COCO dataset, which we then fine-tuned on our own data. As
data augmentation, we varied the image intensity, rotation and scale.
Since the symmetry of the objects is important for object states, we
did not use a flipping augmentation.

Performance measure. As a measure of performance, we
computed the precision and recall scores as well as the mean average
precision (mAP). The reason we choose to use these measures is
that they are standard measures for object detection and are used
in the papers introducing the YOLO object detector and its follow-
up variants [28, 35]. This allows us to compare our state-enhanced
method directly to the standard object detector. The difference is that
in our case, the detected class is not the object itself, but variations of
the object, meaning the states. Further, we use the accuracy measure,
which also accounts for the true negatives to indicate how correct
the model predictions are.

Precision, recall, and accuracy are measured at an intersection
over union (IoU) threshold of 0.5. While the YOLOv7 framework
computes the precision and recall at the maximum harmonic mean in
regards to IoU, we chose to report the precision, recall, and accuracy
at a fixed IoU value, which allows us to do the comparison in Section
5.3. We use a prediction confidence of 0.3. The two mAP scores in
our tables refer to the IoU threshold: mAP 0.5 sets a fixed threshold
of 0.5, while mAP 0.5:0.95 averages the score at 10 discrete IoU
thresholds from 0.5 to 0.95 with a step of 0.05. This is a more robust
measure of the performance of the object detector, since it considers
the precision/recall curve over a range of IoU thresholds.

5.1 Module architecture
We investigated the performance of the module architectures de-
scribed in Section 3.2. For this purpose we use the Flower Synth
dataset, since it is generated within a controlled environment and
also has a fairly large amount of states.

We compare the network architectures both with and without
dropout training and present the results in Table 2. The highest
mAP scores are obtained with the StateYOLO-add with dropout,
so we chose this architecture to perform our further experiments.
While StateYOLO-MLP-add also obtains a score better than the
baseline, it seems that the multiplication operation in this case is

Table 3: Performance of our method StateYOLO on various datasets, with different training techniques, on the testing sets of each data set. Details
about the Ikea Table dataset can be found in the work by Liu et al. [14]. The higher scores are highlighted in bold font.

Dataset Method Precision Recall Accuracy mAP 0.5 mAP 0.5:0.95

Lego Flower synthetic YOLOv7 0.85 0.94 0.792 0.906 0.906

StateYOLO-add dropout 0.848 0.951 0.812 0.94 0.94

Lego Flower real YOLOv7 0.816 0.882 0.756 0.853 0.802

StateYOLO-add dropout 0.866 0.925 0.813 0.898 0.834

Lego Flower real extended YOLOv7 0.491 0.85 0.408 0.719 0.675

StateYOLO-add dropout 0.535 0.894 0.462 0.777 0.707

Ikea table YOLOv7 0.816 0.891 0.839 0.846 0.844

StateYOLO-add dropout 0.87 0.942 0.888 0.914 0.906

Origami YOLOv7 0.86 0.859 0.78 0.845 0.828

StateYOLO-add dropout 0.954 0.973 0.942 0.975 0.962

Engine block YOLOv7 0.743 0.818 0.625 0.777 0.777

StateYOLO-add dropout 0.839 0.928 0.785 0.902 0.902

not an appropriate choice. The StateYOLO-MLP-mul architecture
performs better when training without dropout, but still does not
surpass the addition version.

5.2 Comparison with stateless network
To demonstrate our improved state detection over a network with no
prior state information given, we compare our performance to that
of the original YOLOv7. The results can be found in Table 3. The
scores of our approach surpass the stateless method for all datasets
in terms of precision, recall, accuracy, and mAP score. The results
demonstrate that the performance increases with constraints by the
given state priors.

The smallest difference in performance is achieved on the Flower
datasets, where our method still obtains higher results than the
baseline. This might be due to the fact that the states are easier to
distinguish than in the case of the other datasets, a Lego part can be
just present or absent. For the Ikea table, the states are defined in
such a way that a leg that is not mounted fully straight affects the
discrimination between two states.

The largest improvements are seen on the Engine block and on the
Origami datasets. The Engine block is our dataset with the highest
number of states. The results imply that our approach is particularly
suitable for such a case.

5.3 Comparison with the Ikea table dataset
We evaluated our work on the Ikea table dataset introduced in the
paper by Liu et al. [14]. Our results are not directly comparable to
theirs, since they train on synthetic datasets and test on real datasets,
while we only use the real dataset. We use a standard split (training
0.7, testing 0.2, validation 0.1). We achieve a better performance
than Liu et al. [14] on the ‘table’ real dataset by a margin of around
5% in precision and 11% in recall at an IoU threshold of 0.5. These
numbers should be interpreted with caution because of the different
training set, and, also, because our test set is a random fraction of
the captured dataset, while they test on the entire captured dataset.

5.4 Synthetic and recorded data
From our datasets, the flower object is the only one where real
as well as synthetic data is available. Our results show that the

improvement over the baseline is larger for the real dataset. It
appears that YOLOv7 can properly discriminate fine details between
states on the noise-free synthetic data, but not so well (compared to
our enhanced version) for real data, where previous state information
is more helpful.

5.5 Non-rigid objects and hand interactions
In order to evaluate our approach on a dataset showing non-rigid
parts, we use the example of folding an Origami bird. This dataset
contains states where the differences are more subtle, and the hands
are also included in the bounding boxes.

We capture this dataset with three users, and then we split it into
training, validation and testing. The results in Table 3 show that the
detector can handle non-rigid objects well. Our approach improves
the performance by around 13% mAP, and 16% on accuracy.

5.6 Further examples
The goal of our work is to create and study an approach that is
usable in real-world scenarios. To this end, we also evaluate the
performance of our detector on video recordings of users performing
a step-by-step procedure (without AR guidance). By comparing
our method to the original object detector, we identify cases where
our method offers an advantage. For this qualitative evaluation, we
used the Lego flower and the Origami bird. We recorded additional
sequences following a written tutorial. The videos presented in this
section were not used for training or quantitative evaluation.

We run our detector in the same fashion as described in Section
3, by keeping a cache of the last states, which indicate the majority
vote for the next additional input to the network. Figure 5 shows
examples of our method outperforming the baseline. In the case of
the Lego flower assembly tutorial (in the top part of the figure), the
user follows states #37, #38, and then #39. The baseline detector
correctly identifies states #37 and #38, but confuses state #39 with
state #45, since states #39 and #45 have a similar appearance. Given
the information that the previous state was #38, our state-aware
detector correctly predicts state #39.

The example with the Origami tutorial (Figure 5 bottom) shows
the transition from state 5 to state 6. Also here, our detector distin-
guishes these correctly. The baseline detector initially detects state

Figure 5: Example of different outputs on the baseline detector and
our method. When states are visually similar, the baseline detector
can end up in the wrong state. In contrast, given the contextual
information of the previous state, ours predicts the correct state.

#6, then mistakenly state #10. This is because state #10 is similar in
appearance to state #6, the difference being folding the bird’s beak.
As shown in the example, the previous state information here also
helps distinguish this.

6 DISCUSSION

Our results indicate that the contextual state information is beneficial,
in the case when a state graph is available, however, the system also
has a few limitations.

A trade-off of our method lies in the detection performance versus
training time. While we achieve higher performance than a state of
the art detector, training can take longer, because more data must be
considered. Every distinct sample presented in the training phase
corresponds to an edge in the state graph, so every image gives rise
to many training samples, created by augmenting it with the possible
previous states. Of course, some effort regarding the authoring of
the state graph needs to be taken into account.

Furthermore, while our approach searches for the next state within
the state graph, detecting unseen erroneous states is a current lim-
itation, but would be interesting to explore in future work. Error
detection could be modeled by our method by explicitly adding

edges that represent frequent mistakes into the state graph. In this
case, the edges must be labeled as ‘correct’ or ‘incorrect’. Alterna-
tively, at runtime, before validating the state, the state neighbors can
be checked. The fast run-time allows for multiple predictions. If any
of the neighbor transitions is predicted with a higher confidence, we
can recover to that particular state.

We show that our method increases the performance over the
baseline, but of course our enhanced detector is not guaranteed to
always predict the correct state. To improve this, other information
sources can be considered. Besides color images and state graphs,
data regarding body tracking, hand tracking, gaze tracking or voice
input could be fused into the network in a similar way like we do
with the state information.

7 CONCLUSION AND FUTURE WORK

In the case of AR tutorials that do not require user validation, de-
tecting the correct state is particularly important, since the tutorial
cannot progress otherwise. Especially when states are similar in
appearance, jumping to a wrongfully predicted position in the state
graph can lead to an incorrect next instruction or the tutorial being
stuck in a particular state. In such a case, improving the performance
of an object detector by making it state-aware would positively
impact the overall AR tutorial experience.

Motivated by our exploration of different architectures for the
state-graph module shown in Table 2, more complex network ar-
chitectures may also be considered when utilizing state graph pri-
ors [41]. We plan to explore how we can improve the performance
of our network.

We explored heavy object occlusions using the origami example
of a real video containing frames with hands covering the origami
(Figure 4a), and the results demonstrate that our approach can handle
such a case. Although we have not observed significant blurry
images in our real datasets, investigating such edge cases would
be interesting. We expect our method to also work better than the
baseline with blurry images since the state graph provides additional
information in comparison to a standard detector.

Another future direction is domain adaptation. For the scope
of this paper, we use the same image type for training and testing,
but, in practice, image types may vary. For instance, if a 3D model
of the object is available, it can be used to render synthetic data,
allowing training only on synthetic data or on a mixture of both real
and rendered samples [14]. In this context, one could also explore
different rendering techniques to increase realism or to simulate
physical camera properties [19].

As a conclusion, we show that contextual information has the
potential to improve state detection. We create three datasets for
this task ranging from 10 to over 100 states to showcase the perfor-
mance of our method, and also implement a proof of concept AR
application using the enhanced detector. We designed our approach
with a typical AR use case in mind – step-by-step tutorials – but the
proposed method is not limited to this scenario. State-aware config-
uration detection can be employed wherever a fixed state graph is
defined and a visual state validation is needed to progress to the next
state, such as in industrial production. We make our datasets and
code available on our project website, enabling further experiments
and comparisons to follow-up work.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund Lise Meitner
(grant no. M3374) and FWF (grant no. P33634) and the Competence
Center VRVis, which is funded by BMK, BMDW, Styria, SFG, Tyrol,
and Vienna Business Agency in the scope of COMET - Competence
Centers for Excellent Technologies (879730), which is managed by
FFG. We want to express our gratitude to Professor Didier Stricker
and Yongzhi Su for the shared datasets.

REFERENCES

[1] Y. Ben-Shabat, X. Yu, F. Saleh, D. Campbell, C. Rodriguez-Opazo,
H. Li, and S. Gould. The ikea asm dataset: Understanding peo-
ple assembling furniture through actions, objects and pose. In Proc.
IEEE/CVF Winter Conf. on Applications of Computer Vision, pp. 847–
859, 2021. doi: 10.1109/WACV48630.2021.00089

[2] B. Bhattacharya and E. H. Winer. Augmented reality via expert demon-
stration authoring (AREDA). Computers in Industry, 105:61–79, 2019.
doi: 10.1016/j.compind.2018.04.021

[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal
speed and accuracy of object detection, 2020. doi: 10.48550/arXiv.
2004.10934

[4] P. Breedveld. Observation, manipulation, and eye-hand coordination
problems in minimally invasive surgery. In Proc. European Conf. on
Human Decision Making and Manual Control, Kassel, pp. 219–231.
Citeseer, 1997.

[5] S. Chidambaram, H. Huang, F. He, X. Qian, A. M. Villanueva, T. S.
Redick, W. Stuerzlinger, and K. Ramani. Processar: An augmented
reality-based tool to create in-situ procedural 2D/3D AR instructions.
In Designing Interactive Systems Conf., pp. 234–249, 2021. doi: 10.
1145/3461778.3462126

[6] G. Chu, B. Potetz, W. Wang, A. Howard, Y. Song, F. Brucher, T. Leung,
and H. Adam. Geo-aware networks for fine-grained recognition. In
Proc. the IEEE/CVF Int. Conf. on Computer Vision Workshops, 2019.
doi: 10.1109/ICCVW.2019.00033

[7] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and W. W. Mayol-
Cuevas. You-do, i-learn: Discovering task relevant objects and their
modes of interaction from multi-user egocentric video. In Proc. British
Machine Vision Conf. (BMVC), vol. 2, p. 3, 2014. doi: 10.5244/C.28.
30

[8] N. Gavish, T. Gutiérrez, S. Webel, J. Rodrı́guez, M. Peveri, U. Bockholt,
and F. Tecchia. Evaluating virtual reality and augmented reality training
for industrial maintenance and assembly tasks. Interactive Learning
Environments, 23(6):778–798, 2015. doi: 10.1080/10494820.2013.
815221

[9] R. Girshick. Fast r-cnn. In Proc. Int. Conf. on Computer Vision (ICCV),
pp. 1440–1448, 2015. doi: 10.1109/ICCV.2015.169

[10] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Proc. Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
580–587. IEEE Computer Society, 2014. doi: 10.1109/CVPR.2014.81

[11] A. Gupta, D. Fox, B. Curless, and M. Cohen. Duplotrack: a real-time
system for authoring and guiding duplo block assembly. In Proc. ACM
Symp. on User Interface Software and Technology (UIST), pp. 389–402,
2012. doi: 10.1145/2380116.2380167

[12] S. J. Henderson and S. K. Feiner. Augmented reality in the psychomotor
phase of a procedural task. In Proc. Int. Symp. on Mixed and Augmented
Reality (ISMAR), pp. 191–200. IEEE, 2011. doi: 10.1109/ISMAR.2011
.6092386

[13] B. Kerbl, D. Kalkofen, M. Steinberger, and D. Schmalstieg. Interactive
disassembly planning for complex objects. Computer Graphics Forum,
34(2):287–297, may 2015. doi: 10.1111/cgf.12560

[14] H. Liu, Y. Su, J. Rambach, A. Pagani, and D. Stricker. Tga: Two-level
group attention for assembly state detection. In IEEE Int. Symp. on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 258–263.
IEEE, 2020. doi: 10.1109/ISMAR-Adjunct51615.2020.00074

[15] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su,
J. Zhu, and L. Zhang. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection, 2023. doi: 10.48550/arXiv.
2303.05499

[16] Z. Liu, Z. Zhu, E. Jiang, F. Huang, A. M. Villanueva, X. Qian, T. Wang,
and K. Ramani. Instrumentar: Auto-generation of augmented reality
tutorials for operating digital instruments through recording embodied
demonstration. In Proc. ACM Conf. on Human Factors in Computing
Systems (CHI), pp. 1–17, 2023. doi: 10.1145/3544548.3581442

[17] O. Mac Aodha, E. Cole, and P. Perona. Presence-only geographical
priors for fine-grained image classification. In Proc. Int. Conf. on
Computer Vision (ICCV), pp. 9596–9606, 2019. doi: 10.1109/ICCV.
2019.00969

[18] S. Makris, G. Pintzos, L. Rentzos, and G. Chryssolouris. Assembly

support using AR technology based on automatic sequence generation.
CIRP Annals, 62(1):9–12, 2013. doi: 10.1016/j.cirp.2013.03.095

[19] D. Mandl, P. M. Roth, T. Langlotz, C. Ebner, S. Mori, S. Zollmann,
P. Mohr, and D. Kalkofen. Neural cameras: Learning camera charac-
teristics for coherent mixed reality rendering. In Proc. Int. Symp. on
Mixed and Augmented Reality (ISMAR), pp. 508–516. IEEE, 2021. doi:
10.1109/ISMAR52148.2021.00068

[20] A. Miller, B. White, E. Charbonneau, Z. Kanzler, and J. J. LaViola Jr.
Interactive 3d model acquisition and tracking of building block struc-
tures. IEEE Trans. on Visualization and Computer Graphics (TVCG),
18(4):651–659, 2012. doi: 10.1109/TVCG.2012.48

[21] P. Mohr, B. Kerbl, M. Donoser, D. Schmalstieg, and D. Kalkofen.
Retargeting technical documentation to augmented reality. In Proc.
ACM Conf. on Human Factors in Computing Systems (CHI), pp. 3337–
3346, 2015. doi: 10.1145/2702123.2702490

[22] P. Mohr, D. Mandl, M. Tatzgern, E. Veas, D. Schmalstieg, and
D. Kalkofen. Retargeting video tutorials showing tools with surface
contact to augmented reality. In Proc. ACM Conf. on Human Factors
in Computing Systems (CHI), pp. 6547–6558, 2017. doi: 10.1145/
3025453.3025688

[23] P. Mohr, S. Mori, T. Langlotz, B. H. Thomas, D. Schmalstieg, and
D. Kalkofen. Mixed reality light fields for interactive remote assistance.
In Proc. ACM Conf. on Human Factors in Computing Systems (CHI),
pp. 1–12, 2020. doi: 10.1145/3313831.3376289

[24] N. Petersen, A. Pagani, and D. Stricker. Real-time modeling and
tracking manual workflows from first-person vision. In Proc. Int. Symp.
on Mixed and Augmented Reality (ISMAR), pp. 117–124. IEEE, 2013.
doi: 10.1109/ISMAR.2013.6671771

[25] N. Petersen and D. Stricker. Learning task structure from video exam-
ples for workflow tracking and authoring. In Proc. Int. Symp. on Mixed
and Augmented Reality (ISMAR), pp. 237–246. IEEE, 2012. doi: 10.
1109/ISMAR.2012.6402562

[26] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev, S. Avidan,
and M. F. Cohen. Pause-and-play: automatically linking screencast
video tutorials with applications. In Proc. ACM Symp. on User Interface
Software and Technology (UIST), pp. 135–144, 2011. doi: 10.1145/
2047196.2047213

[27] X. Qian, F. He, X. Hu, T. Wang, A. Ipsita, and K. Ramani. Scalar: Au-
thoring semantically adaptive augmented reality experiences in virtual
reality. In Proc. ACM Conf. on Human Factors in Computing Systems
(CHI), CHI ’22. Association for Computing Machinery, New York, NY,
USA, 2022. doi: 10.1145/3491102.3517665

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proc. Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788, 2016. doi: 10.
1109/CVPR.2016.91

[29] D. Reiners, D. Stricker, G. Klinker, and S. Müller. Augmented reality
for construction tasks: Doorlock assembly. In Proc. Int. Workshop
on AR: Placing artificial objects in real scenes, pp. 31–46. AK Peters,
Ltd., 1999.

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Trans. on Pattern
Analysis and Machine Intelligence (TPAMI), 39(6):1137–1149, 2017.
doi: 10.1109/TPAMI.2016.2577031

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[32] A. Stanescu, P. Mohr, D. Schmalstieg, and D. Kalkofen. Model-free
authoring by demonstration of assembly instructions in augmented
reality. IEEE Trans. on Visualization and Computer Graphics (TVCG),
28(11):3821–3831, 2022. doi: 10.1109/TVCG.2022.3203104

[33] K. Tang, M. Paluri, L. Fei-Fei, R. Fergus, and L. Bourdev. Improving
image classification with location context. In Proc. Int. Conf. on
Computer Vision (ICCV), pp. 1008–1016, 2015. doi: 10.1109/ICCV.
2015.121

[34] B. Wang, G. Wang, A. Sharf, Y. Li, F. Zhong, X. Qin, D. CohenOr, and
B. Chen. Active assembly guidance with online video parsing. In Proc.
IEEE Virtual Reality (VR), pp. 459–466. IEEE, 2018. doi: 10.1109/VR
.2018.8446602

[35] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors.
In Proc. Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 7464–7475, June 2023.

[36] R. Wang, Y. Zhang, J. Mao, C.-Y. Cheng, and J. Wu. Translating a
visual lego manual to a machine-executable plan. In Proc. European
Conf. on Computer Vision (ECCV), pp. 677–694. Springer, 2022. doi:
10.1007/978-3-031-19836-6 38

[37] R. Wang, Y. Zhang, J. Mao, R. Zhang, C.-Y. Cheng, and J. Wu. Ikea-
manual: Seeing shape assembly step by step. Advances in Neural
Information Processing Systems, 35:28428–28440, 2022.

[38] M. Whitlock, G. Fitzmaurice, T. Grossman, and J. Matejka. AuthAR:
Concurrent authoring of tutorials for AR assembly guidance. In Proc.
Graphics Interface, p. 431 – 439, 2020. doi: doi.org/10.20380/GI2020.
43

[39] L.-C. Wu, I.-C. Lin, and M.-H. Tsai. Augmented reality instruction for
object assembly based on markerless tracking. In Proceedings ACM
Symposium on Interactive 3D Graphics and Games, pp. 95–102, 2016.
doi: 10.1145/2856400.2856416

[40] M. Yamaguchi, S. Mori, P. Mohr, M. Tatzgern, A. Stanescu, H. Saito,
and D. Kalkofen. Video-annotated augmented reality assembly tutori-

als. In Proc. ACM Symp. on User Interface Software and Technology
(UIST), pp. 1010–1022, 2020. doi: 10.1145/3379337.3415819

[41] L. Yang, X. Li, R. Song, B. Zhao, J. Tao, S. Zhou, J. Liang, and J. Yang.
Dynamic mlp for fine-grained image classification by leveraging ge-
ographical and temporal information. In Proc. Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 10945–10954, 2022. doi:
10.1109/CVPR52688.2022.01067

[42] J. Zauner, M. Haller, A. Brandl, and W. Hartman. Authoring of a
mixed reality assembly instructor for hierarchical structures. In Proc.
Int. Symp. on Mixed and Augmented Reality (ISMAR), pp. 237–246,
2003. doi: 10.1109/ISMAR.2003.1240707

[43] B. Zhou and S. Güven. Fine-grained visual recognition in mobile
augmented reality for technical support. IEEE Trans. on Visualization
and Computer Graphics (TVCG), 26(12):3514–3523, 2020. doi: 10.
1109/TVCG.2020.3023635

[44] V. Zogopoulos, E. Geurts, D. Gors, and S. Kauffmann. Authoring tool
for automatic generation of augmented reality instruction sequence for
manual operations. Procedia CIRP, 106:84–89, 2022. doi: 10.1016/j.
procir.2022.02.159

	Introduction
	Related work
	Step-by-step tutorials
	State detection
	Object detectors

	Method
	State graph
	Detector architecture
	Training the detector
	Use of the detector in an AR application

	Evaluation data
	Captured datasets
	Synthetic datasets

	Results
	Module architecture
	Comparison with stateless network
	Comparison with the Ikea table dataset
	Synthetic and recorded data
	Non-rigid objects and hand interactions
	Further examples

	Discussion
	Conclusion and Future work

