Progress Observation in Augmented Reality Assembly Tutorials Using
Dynamic Hand Gesture Recognition

Tania Kaimel*! Ana Stanescu'! Peter Mohr! Dieter Schmalstieg ' Denis Kalkofen !

'Graz University of Technology

ZUniversity of Stuttgart

3Flinders University

hand pose sequence\

©® L ©
’) \
B
— module
L
¢’ C)

Neural network

State transition
validation

Figure 1: Augmented Reality assembly tutorials. (a) The user follows visual instructions within the 3D workspace. In this
example, the user removes the highlighted object part using a screwdriver. (b) During interaction, hand poses (c) are classified
using a neural network (d) to observe the state of the system (e) and detect when to proceed automatically to the next step (f).

ABSTRACT

‘We propose a proof-of-concept augmented reality assembly tutorial
application that uses a video-see-through headset to guide the user
through assembly instruction steps. It is solely controlled by observ-
ing the user’s physical interactions with the workpiece. The tutorial
progresses automatically, making use of hand gesture classification
to estimate the progression to the next instruction. For dynamic
hand gesture classification, we integrate a neural network module
to classify the user’s hand movement in real time. We evaluate the
learned model used in our application to provide insights into the
performance of implicit gestural interactions.

1 INTRODUCTION AND RELATED WORK

Assembly tutorials commonly use a step-by-step design consisting
of a sequence of steps which are presented one after another. Effi-
ciently following step-by-step tutorials requires synchronizing the
presentation with the progress of the user [5]. In Augmented Reality
(AR), assembly tutorials have mostly relied on manual step pro-
gression [9], and only recently used detection of the current object
configuration from 2D or 3D scene observations [7, 8]. However,
poor image data, small object parts, and heavy object occlusions
during user interaction often make it difficult to confidently detect
the object configuration at run-time. Thus, in this work, we focus
on using the hand motions of the user who follows an AR assembly
tutorial to detect the completion of a step.

Several research projects have investigated the applicability of
gesture recognition for AR tutorials before. For example, the very
recent work of Reza et al. [6] focuses on detecting hand gestures for
interactions in AR. This approach is similar to ours in its classifica-
tion of dynamic hand gestures for an AR application. In contrast to
our work, it deals with interactions with individual measuring tools
and object parts, rather than with object assembly, where a correct
sequence of assembly states must be verified.

*e-mail: tania.kaimel @student.tugraz.at
fe-mail: stanescu@tugraz.at

Coupete et al. [1] propose using gesture recognition to support
human-robot interaction in assembly tasks. An RGB-D camera
records the scene from a top view and tracks the user’s hands. The
extracted data is used to train a hidden Markov model. The work
of De Smedt et al. [2, 3] introduces a hand gesture classification
approach based on support vector machines as well as the DHG
dataset, which contains hand skeleton poses with different gestures,
recorded from a third person view. We focus on a more concrete use
case with custom gestures, including the presence of tools.

The HIGS system of Lu et al. [4] automatically extracts video in-
structions, including hand gestures from user demonstrations, which
are subsequently used to guide new users through the tasks. The
guidance is based on extracting hand joints from frames and comput-
ing the proximity to objects. In contrast to our work, this approach
uses a monitor to show localized video snippets and relies on Eu-
clidean distances to detect which gesture has been performed.

2 METHOD

Our AR application implements a step-by-step assembly tutorial
that enables a hands-free transition between instruction steps by
classifying the user’s action. We classify the gestures in real time
using a neural network. The application is implemented in Unity.
The object used in our experiments is an engine (Figure 1), consisting
of three main parts, four screws, and two nuts that need to be fastened.
Spare parts are located in a bin on the right of the work area.

AR application Direct application control is only required for
starting and stopping the application and during registration. For
object registration, we build on Meta’s Scene Model' for initial
object placement. It enables the user to define areas such as desks
or chairs and use them as permanent scene anchors that can be
re-localized after an application restart. To offer a semi-automatic
registration of the initial object part, we ask the user to identify the
working area with the hand controllers upon first use. The initial
object is placed in the center of the work area and the user then is
instructed to make small pose adjustments with their hand to ensure
proper object registration.

Thttps://www.meta.com/de-de/blog/quest/mixed-reality-definition-
passthrough-scene-understanding-spatial-anchors/

A N

class 0) class 1 /

class 2

Figure 2: Example hand sequences from all used classes: rotation
(0), removal (1), and addition (2).

We show instructions by highlighting registered 3D parts of the
object. The next step is indicated by overlaying a semi-transparent
green model over the part that needs to be handled. In case a tool
is needed, a virtual copy of it is additionally displayed on the side.
During the tutorial, the current instruction is shown along with icons
that provide feedback on hand movements, as classified by the neural
network. If the predicted class of the current gesture coincides with
the expected class, according to the assembly sequence of the object,
a checkmark icon appears next to the highlighted object (Figure
1(e)). A wrong gesture prompts the display of an ”X” icon. After the
last instruction step is completed, the application visually confirms
a successful assembly.

Classification The classification runs on a desktop PC and
communicates with the Unity application using UDP over WiFi.
The module uses the MMskeleton framework [11] with the ST-GCN
network [10]. We adapted the input format from the whole body
skeleton to the hand skeleton, in a format specifying connections
from the wrist (defined as root) to the individual fingers, leading to a
total of 12 joints. The classes for hand actions are rotation, removal
(pick-up), and addition of object parts, as shown in Figure 2.

Since our gestures are dynamic, we must choose a time window
in which to capture hand movement. We empirically determined a
duration of 3 s, the approximate time needed for the gestures used.
For example, a removal action rarely takes longer than 3 s. If the
recordings are longer, the sequence would contain irrelevant data for
this gesture, while shortening the interval would cut off the gesture.
We extract 10 samples of 0.3 s length from such a 3 s recording.

Data Recordings Our application offers a recording function-
ality where sequences of hand poses can be saved as datasets. For
automatic class labeling, we make use of a bounding-box-like sys-
tem that uses thresholds based on the size of the virtual object to
determine if the user’s hand is in reach of the object, indicating that
the gesture has started. In order to decide if a hand is in reach, the
positions of the wrist, the thumb and the index finger are considered.
As soon as this requirement is met, data recording starts. To start
recording the next instruction, the user’s hands had to cycle once
through in-reach and out-of-reach states.

Data recording was carried out by an expert. We converted the 3D
joint positions into the coordinate system of the hand and normalized
with regard to the first wrist position of each sample. We applied
data augmentation by adding small random offsets to each joint’s
coordinates. Our dataset contains 1038 samples in the training set
and 475 samples in the validation set, a total of 1513 samples.

3 RESULTS AND FUTURE WORK

To explore which combination of hand joints performs best, we
evaluated several variants of the dataset, either with the entire hand
or by leaving out some fingers. We aim to investigate whether
occlusions of parts of the hand have a negative impact on the results.

We tested the system with batch sizes 8 and 16, and with differ-
ent numbers of epochs ranging from 80 to 400. Best results were
achieved using a batch size of 8, 250 epochs for training and a
learning rate of 0.0001. We run the experiments on an NVIDIA
GeForce 3080 Ti graphics card and display AR on a Meta Quest 3.
We train using a three-fold cross-validation. The results obtained by
testing on validation set are averaged for the folds (Table 1). The

Dataset Topl |Recall | Precision
— rot 200
Acc. 8
All hand joints | 95.80 [95.55 |95.15 ‘g rem 100
Thumb-+index |95.88|95.87 |93.31 - 0
+wrist rot rem add
Without index |94.50(94.17 {94.33 Predicted label

Figure 3: Confusion ma-
Table 1: Classification results with trix of the best performing
different combinations of joints. model (all hand joints).

best results are obtained on the whole hand (Figure 3), but high
accuracy, precision and recall are achieved in all test configurations
with real-time inference.

As a proof of concept, our work has clear limitations. If similar
gestures are needed at a certain point in the assembly for different
possible steps, the application may not be able to distinguish them.
A further evaluation of gesture detection could offer more insight
into the robustness and applicability of our work. Recording more
data or combining our data with a dataset such as DHG [3] could
provide more general results.

In conclusion, we demonstrate how the natural use of hands in
assembly can facilitate automatic progress observation in AR as-
sembly applications. The noteworthy performance of the skeleton
action recognition indicates how this approach can expand the vocab-
ulary of spatial interaction techniques for AR applications targeting
everyday use.

ACKNOWLEDGMENTS

Dieter Schmalstieg is supported by the Alexander von Humboldt
Foundation and the German Federal Ministry of Education and
Research. The authors wish to thank Professor Rudolf Pichler from
the smartfactory @tugraz lab for the shared data recordings.

REFERENCES

[1] E.Coupeté, F. Moutarde, and S. Manitsaris. Gesture recognition using a
depth camera for human robot collaboration on assembly line. Procedia
Manufacturing, 2015.

[2] Q. De Smedt, H. Wannous, and J.-P. Vandeborre. Skeleton-based
dynamic hand gesture recognition. In Proc. CVPRW, pp. 1-9, 2016.

[3] Q. De Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. L. Saux,
and D. Filliat. 3d hand gesture recognition using a depth and skeletal
dataset: Shrec’17 track. In Workshop on 3D Object Retrieval, pp.
33-38,2017.

[4] Y. Lu and W. Mayol-Cuevas. Higs: Hand interaction guidance system.
In IEEE ISMAR Adjunct, 2019.

[5] S.Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdeyv, S. Avidan,
and M. F. Cohen. Pause-and-play: automatically linking screencast
video tutorials with applications. In ACM UIST, pp. 135-144, 2011.

[6] S.Reza, Y. Zhang, O. Camps, and M. Moghaddam. Towards seamless
egocentric hand action recognition in mixed reality. In /[EEE ISMAR-
Adjunct, pp. 411-416, 2023.

[71 A. Stanescu, P. Mohr, M. Kozinski, S. Mori, D. Schmalstieg, and
D. Kalkofen. State-aware configuration detection for augmented reality
step-by-step tutorials. In IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 157-166, 2023.

[8] A. Stanescu, P. Mohr, D. Schmalstieg, and D. Kalkofen. Model-free
authoring by demonstration of assembly instructions in augmented
reality. IEEE Transactions on Visualization and Computer Graphics
(special issue ISMAR), 28(11):3821-3831, 2022.

[9] M. Yamaguchi, S. Mori, P. Mohr, M. Tatzgern, A. Stanescu, H. Saito,
and D. Kalkofen. Video-annotated augmented reality assembly tutorials.
UIST °20, p. 1010-1022, 2020.

[10] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional
networks for skeleton-based action recognition. In Proceedings of the
AAAI conference on artificial intelligence, vol. 32, 2018.

[11] S. Yan, Y. Xiong, J. Wang, and D. Lin. Mmskeleton: open source
toolbox for skeleton-based human understanding. https://github.
com/open-mmlab/mmskeleton, 2019.

