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Figure 1: Learned visual coherence for simulating the characteristics of physical cameras. (a) Input frame showing a scene capture
with a physical camera. (b, top) Inserting a virtual object (the tiger on the right side) using a naive rendering introduces a break-in
visual coherence. (b, bottom) We address this gap with a Neural Camera which is able to reproduce characteristics such as blur and
color filtering. (c) A direct comparison between a naive rendering of a virtual object (right-Naive), our approach (middle-Learned),
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and to the output of a real camera (left-Real).

ABSTRACT

Coherent rendering is important for generating plausible Mixed
Reality presentations of virtual objects within a user’s real-world
environment. Besides photo-realistic rendering and correct lighting,
visual coherence requires simulating the imaging system that is used
to capture the real environment. While existing approaches either
focus on a specific camera or a specific component of the imaging
system, we introduce Neural Cameras, the first approach that jointly
simulates all major components of an arbitrary modern camera using
neural networks. Our system allows for adding new cameras to
the framework by learning the visual properties from a database of
images that has been captured using the physical camera. We present
qualitative and quantitative results and discuss future direction for
research that emerge from using Neural Cameras.

1 INTRODUCTION

Mixed Reality (MR) blends the real-world environment with 3D
computer-generated graphics. Azuma [1] highlights the need for
real-time rendering and precise spatial registration. However, many
MR applications additionally require a high level of visual coher-
ence that makes it difficult to differentiate real from virtual scene
elements [17]. Naively rendering virtual content often reveals its
artificial nature and thus, easily breaks the illusion of a single MR
environment [31].

A great deal of MR research has focused on photo-realistic ren-
dering [17] and on estimating the real-world lighting to align the
lighting of the virtual scene accordingly [24]. However, the chal-
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lenges for achieving visual coherence also depend on the MR device
that is used to blend real and virtual scene content [3]. For example,
applications that focus on video-based MR [15] need to account
for the characteristics of the camera in order to visually align the
rendering with a capturing of the real environment. This includes
the lens, the sensor, and pixel conversions of the image signal pro-
cessor (ISP). Although existing approaches can simulate several
components of the camera pipeline [19,40,45], they require detailed
camera specifications, often not obtainable, or special calibration
targets to be visible in the scene [21,28]. This makes them difficult
to apply to new cameras when specifics are unknown or calibration
targets are not available at runtime.

We introduce Neural Cameras, a generic and practical solution
for increasing the visual coherence in video-based MR applications.
Neural Cameras learn the characteristics of their physical counter-
part from an image database that has been captured with the camera
of interest. At runtime, Neural Cameras apply the learned character-
istics to the renderings of virtual MR scene elements. Contrary to
existing approaches, adding support for a new camera is as simple
as capturing a new image database. For example, the results in this
paper have been generated with databases that took approximately
three hours in total for training one Neural Camera. No further
knowledge about the physical camera was required because Neu-
ral Cameras learn to mimic the camera characteristics which are
common to the images in the database.

Neural Cameras also present the first approach for visual coher-
ence in video-based MR that jointly supports lens, sensor and ISP
effects. This is demonstrated in Figure 1(b and c). Figure 1(b-top)
shows a real toy tiger next to a rendering of its 3D scan, using a tra-
ditional virtual camera. As a result, the virtual toy tiger suffers from
mismatching colors and lens blur. In contrast, Figure 1(b-bottom)
shows the same MR scene but rendered with a Neural Camera which
has been trained to mimic the visual characteristics of the physical



camera. The Neural Camera aligns colors and lens blur of the render-
ing to those produced by the physical camera that is used to capture
the real toy tiger.

A more direct comparison of a traditional rendering and Neural
Cameras is provided in Figure 1(c), where the 3D scan has been 3D
registered to the real object and partially rendered with a traditional
camera (right-Naive) and with the learned Neural Camera (middle-
Learned). Notice the visual similarity between the image captured
with the physical camera and the rendering generated with the Neural
Camera.

Neural Cameras significantly contribute to the state-of-the-art of
visual coherence in video-based MR. While existing approaches
are often limited by missing camera specifications [19] and missing
calibration targets in the scene at runtime [21, 28], Neural Cameras
overcome those issues as they learn the camera characteristics of-
fline. These are then applied to renderings in new and unprepared
environments at runtime. Therefore, no knowledge about camera
specifications is necessary and no calibration targets have to be in-
cluded in the MR scene at runtime. In summary, this paper presents
the following primary contributions:

* We introduce Neural Cameras, a novel approach for coherent ren-
dering in video-based MR by learning the camera characteristics.

* We introduce individual approaches for learning the characteristics
of the lens, the sensor and the ISP from an image database of the
specific camera.

* We provide a thorough analysis of Neural Cameras.

Prototype. For our prototype implementation, we focused on
the most prominent effects that appear in video-based handheld
MR applications with modern cameras, but left others that are less
prominent, such as chromatic aberration and vignetting, for future
work. Also, we left the simulation of motion blur for future work.

2 RELATED WORK

Visual coherence in MR has been demonstrated using photorealis-
tic and non-photorealistic rendering techniques and approaches to
camera simulation.

2.1 Photorealistic rendering

Photo-realistic rendering has been proposed using 3D stock mod-
els, textured with photographs [18]. While this technique achieves
impressive results it is tailored to stills and, thus, not feasible for
interactive MR applications which are driven by real-time video
input.

Research has also been conducted to support rendering global
illumination effects in MR [23]. Existing approaches enable real-
istic rendering of reflections, refractions, caustics [17,22], radios-
ity [20, 43], material estimation [25], coherent lighting [24, 34],
and shadows, which are cast between virtual and real scene ele-
ments [4,33]. Although we emphasize the importance of illumina-
tion effects, it is not the focus of this work, as we entirely focus on
the effects introduced by the camera. Thus, our current prototype
only supports coherent lighting and shadow rendering to demon-
strate the impact of Neural Cameras. However, since our approach
is designed to extend existing MR frameworks, it can be easily be
extended to include further approaches to photo-realistic rendering
in MR.

2.2 Non-photorealistic rendering

Meeting the visual quality of the physical world is challenging, in
particular, when considering the real-time requirements of most MR
applications. Thus, several research groups have also approached the
issue of visual coherence by reducing the visual fidelity of the real
world [9,31] to create a low-fidelity but coherent MR [12,41]. This
has been done by applying illustrative rendering techniques to all

scene elements (real and virtual), so that they appear similar to each
other [10]. However, since all of these approaches only deliver a low
visual quality, they are unsuitable when details of the environment
need to be preserved (e.g., text, small objects, etc.).

2.3 Camera simulation

One of the key elements to visual coherence in video-based MR
is to mimic the characteristics of the physical camera of the MR
device in the rendering. An early work by Klein and Murray [19]
demonstrates the impact of a camera simulation on visual coherence.
While they simulate several components of a real camera their work
assumes detailed knowledge about the internals of the camera. As
such, the approach and its parameters are tuned to a very specific
camera only. In addition, the approach does not provide a tool for
reproducing the colors of the camera. In contrast, our work focuses
on the three main components of the camera pipeline: the lens, the
sensor, and the ISP. We use advanced learning-based methods for
each of the components to make calibration procedures feasible and
more applicable, while simultaneously not requiring detailed internal
knowledge. Therefore, we review related work on simulating each
of these components.

Lens simulation  Simulation of radial lens distortion is included
in many MR renderings because it can be corrected at high frame
rates [32,45] and calibrated with simple and well-known techniques
based on a few images of a black and white checkerboard [47]. Other
effects, such as depth of field (DoF), chromatic aberration [2], and
motion blur [19,29] are more complex and, thus, less often consid-
ered in MR renderings. For example, applying accurate DoF-effects
to virtual content requires densely sampling the camera aperture
using a number of pinhole cameras [14,27]. Numerous methods
have emerged for accelerating DoF rendering using post-processing
techniques [7, 35, 38]. However, these techniques usually lead to
artifacts around occlusion boundaries [5]. Recently, the DeepFocus
deep neural network (DNN) demonstrated high-quality DoF-effects
from RGB-D images at real-time update rates [46]. While this is
a very promising direction of research, DeepFocus requires a large
amount of training data which consists of several thousand focal
stack images. Such a large database can be generated in a virtual
environment but is difficult to produce with a physical camera in a
real-world setting. Since DeepFocus trains from renderings, it learns
a virtual camera model and produces the DoF-effects accordingly.
Therefore, we cannot apply DeepFocus to match the DoF-effect of
real cameras. Instead, we aim at a network that requires less training
data so that we can feed it with images taken by the physical camera.
Therefore, we trade the high-quality blur as produced by DeepFocus
with one that considers the lens model of the physical camera.

Sensor and ISP simulation There are only a few works that
focus on approximating the color response of the sensor and the
color characteristics of the ISP in real-time applications. Knecht
et al. [21] consider both but treat the sensor and the ISP as one
black box. They simulate the behavior by creating an online color
mapping, requiring knowledge about colors in the physical scene
and its lighting condition. Furthermore, the physical scene needs to
exhibit the full-color range in at least one color channel. In cases
where image areas that contribute to the color range are occluded,
the mapping will be incorrect. The approach by Rohmer et al. [36]
builds upon the work of Knecht et al. but computes a mapping
between reference colors in a point cloud reconstruction and the
camera color space. While demonstrating impressive results, the
output strongly depends on the current view and a stable scene
lighting at runtime. Also, the unknown reference colors prevent
from correctly mapping virtual replicas of real objects. In contrast,
our approach learns the characteristic in an offline step making it
robust to new environments and arbitrary views.

In a physical camera, the RAW image data is commonly also fil-
tered by an ISP, which applies several operations such as demosaic-
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Figure 2: Overview. (a) MR scenes consist of real and virtual elements. In video-based MR, a physical camera captures the real scene, exhibiting
the characteristics of its lens, sensor, and ISP. (b) Our approach renders the virtual scene with traditional approaches and additionally applies
learned (c) lens effects, (d) sensor characteristics such as color and noise, and (e) characteristics of the ISP, to (f) produce the display image.

ing, denoising, white balancing, and compression into a displayable
output format. Recent work based on DNNs proposes simulating
the ISP independent of the sensor. For example, Schwartz et al. [40]
propose DeeplSP, a two-stage DNN for denoising and demosaicing
only. A more complete simulation of the ISP was proposed by Gao
et al. [11], who design a dual network based on the approach of Nam
and Kim [26]. The approach first converts a JPEG camera frame
to RAW image data, to which virtual content is composited, before
the composited RAW image is converted to JPEG and extracted to
the displayable SRGB output. We adapt this network for adding the
characteristics of the ISP to the output of SensorNet and to use the
YUYV image output of the Android camera directly, which we map
to sRGB output only before we display the image.

In summary, contrary to approaches focusing on non-
photorealistic and photorealistic rendering, this work contributes by
simulating the characteristics of the camera pipeline. While current
approaches are limited in their general applicability, Neural Cameras
overcome these limitations by introducing a learning-based approach
that considers arbitrary cameras and arbitrary scenes.

3 OVERVIEW

We designed Neural Cameras to easily integrate with traditional
rendering frameworks. Therefore, we have built Neural Cameras
to operate on an initial rendering to a G-buffer [37], which consists
of color and depth channels. We start by rendering the 3D model
using a traditional MR camera (Figure 2(b)), before applying a series
of post-rendering steps in image-space to add lens, sensor and ISP
effects (Figure 2(c—e)). Since the resulting image includes camera
effects it coherently blends in with the captured frame (Figure 2(f)).

3.1 Initial rendering

When initially rendering virtual structures, we also consider the
illumination in the real-world environment. We use an active light
probe [39], a common state-of-the-art technique for estimating the
lighting and restrict the current application to diffuse objects. We
align the diffuse shading of virtual objects by using image-based
lighting based on the information in the light probe. In addition, we
render shadows similar to the approach of Rhee et al. [33] and we
account for lens distortion, as it has been efficiently implemented in
traditional rendering approaches [32]. Since we focus on simulating
camera effects, we did not implement other effects, such as global
illumination or refraction in our current prototype. However, since
we designed our work to integrate with existing frameworks we can
easily extend it to other effects.

3.2 Mapping the characteristics of the physical camera

The camera-specific effects will be added by applying a learned Neu-
ral Camera to the G-buffer output of the initial rendering phase. To
learn the camera characteristics, we designed three neural networks,
each for one of the major components of the camera pipeline. More
specifically, we designed a network LensNet to mimic the behavior
of the lens system, a network SensorNet to mimic the image sensor,
and a network ISPNet to include effects that are otherwise added by
the ISP. Note that the separation into three different networks allows
skipping LensNet for objects within the depth of field of the camera,
and for training SensorNet and ISPNet with different databases. We
show that both networks require different scales in size and com-
plexity. In the following, we provide a high-level overview of all
three networks before subsequent sections present details and results
for each.

LensNet. We train LensNet to blur the initial rendering accord-
ing to object depth and the focal length of the real camera. We use
a Gaussian mixture model to render high-quality blur and we use
a neural network to find the parameters for the renderer that match
the characteristics of the physical camera lens. To train the network,
we capture images of a planar object, which is placed at several
distances and captured with varying focus distances.

SensorNet. We mimic the image sensor by adding noise and
mapping rendered colors to the color space produced by the physical
camera using SensorNet. We train the network with pairs of captured
and known colors. To produce the training database we take pictures
of a reference object, i.e., a color chart showing known colors, while
varying the lighting, to cause the ISO, and exposure settings of
the real camera to change. We store the RAW images with the
corresponding ISO and exposure values in the database. To reduce
the computational effort at runtime, we do not add artifacts of a
bayer filter to the rendering. Such effects are well corrected by
modern consumer-grade cameras and commonly do not appear in
the output image. Therefore, we automatically apply a de-bayering
to all captured RAW images using the AMaZE algorithm! .

ISPNet. The color chart used for training SensorNet provides
enough color variation for training the color and noise mapping as
they appear in a RAW image. However, a single object does not
provide enough variation to learn the entire filter pipeline which
is introduced by the ISP, when mapping RAW to output images.
Therefore, we additionally produce a larger database of pairs of

lhttp ://www.rawtherapee.com


http://www.rawtherapee.com

" Input 3xHidden Output
2 Relu 256 Relu 9 Linear

= A1

@ LensNet\
X
py:! '

g, Lenshet ~ionm

/A

e o
.

@ Training .

Real Camera [ % *

©

S ¥ TF PSR 238 | WX TF psNr 264 [ WFTF psnr. 302 [TFFFE Reference
. —yre

. SSIM: 0.918 SSIM:0.943

Es e rts Bn

|S
DDC GMM:EM GMM:LensNet Redl Lens

PSNR: 253 | PSNR: 26.9 PSNR: 310
SIM: 0.937 SSIM:0.956 SSIM:0.972 Reference
5 ] E - iy - A g

Figure 3: LensNet. (a) We designed LensNet as a multilayer perceptron, composed of a two-dimensional input layer (for object depth and focus
distance), three hidden layers with 256 units each, and a nine-dimensional output layer, where the neurons correspond to three sets of Gaussian
kernel parameters for a mixture model (GMM) with K =3 components. (b) For training, we capture blurred and in-focus images of a calibration
target. The DoF renderer artificially blurs the in-focus image with the GMM. The parameters are updated to minimize the difference between
captured and rendered image. (c) We compare the results of our approach to depth dependent convolution (DDC), to results using a GMM which
has been estimated using expectation maximization (EM), and to a reference image captured by the physical camera (Real Lens).

RAW and output images. Including the color chart to map captured
to known colors adds a large overhead to the capture process. Thus,
to reduce the effort required to generate the database for training, we
design an additional network (ISPNet) that only maps from already
known colors in RAW image space, as produced by SensorNet, to
the camera’s output space, which includes the filtering introduced
by the ISP.

4 LEARNING THE LENS SYSTEM

Lenses appear to have many imperfections that introduce optical ef-
fects such as distortion and chromatic aberration. However, modern
cameras often effectively counter them by using corrective elements
in the lens system or through software as part of the ISP. One ef-
fect that remains prominently visible is the blur that results from
objects outside the focus distance of the camera. Such focus blur
provides important depth cues to the human visual system, which is
why renderings of mismatched DoF effects may appear at a wrong
distance. Therefore, besides undistorting the image during the initial
G-buffer rendering phase, we focus the simulation of the lens system
on reproducing DoF effects.

DoF effects originate from light rays which are bent by the indi-
vidual lens elements before they hit the sensor. Thereby, the lens
focuses light rays onto the camera sensor to get a sharp image of the
scene. However, depending on the properties of the lens system, i.e.,
the aperture and focal length, only objects in a certain depth range,
the DoF, appear sharp. Light rays from objects outside the DoF do
not fully converge to a single pixel on the sensor, and thus, spread
within a circle of confusion (CoC), occupying several pixels on the
sensor, which causes the corresponding objects to appear blurred.

The CoC diameter ¢(d,) on the camera sensor of a point at dis-
tance d, to the camera can be computed as

[ |do—dy]

W=
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where A denotes the diameter of the aperture, d the focal distance,
and f the focal length of the lens system. Thus, given these camera
parameters, we can calculate the CoC diameter, which can be used
to blur renderings in a post-processing step using a simple depth-
dependent convolution [5] (see Figure 3(c-DDC)).

However, since real lenses do not match the thin lens model, the
intensity of light rays within the CoC degrades towards the edge of

the CoC, hence using a uniform blur kernel will not model the lens
correctly. In order to reproduce blur more accurately, we introduce
a Gaussian Mixture Model (GMM), comprised of weighted symmet-
rical 2D Gaussians to weight the convolution kernels accordingly.
We set up the GMM according to

K
GMM = Zgi(nc(do))7 2)

where r is the radius from the pixel center, and K is the number of
individual Gaussian components. Each Gaussian of the GMM is
defined as )
(ffllé‘)
gilre(dy)) = qwire T r=cldy)/2 3)
0 r>c(dy)/2,

where o;, ; and w; denote the standard deviation, the center position,
and the weighting of the i"" Gaussian respectively.

Figure 3(c-GMM:EM) demonstrates the advantage of a normal-
ized GMM to model lens blur over a uniformly weighted blur ker-
nel Figure 3(c-DDC), rendered using the depth-dependent convolu-
tion [5]. While the GMM allows for an arbitrary number of Gaussian
components, K, the examples in Figure 3(c) have been generated
using K = 3, which was sufficient to demonstrate the impact. We
find the parameters o;, U; and w; by fitting the GMM with the
expectation-maximization (EM) algorithm in Matlab [6] on an im-
age that presents the calibration target (shown in Figure 3(b)) out of
focus to provide enough out of focus blur for the EM to work.

Although our GMM-based lens model enables for better approxi-
mating blur generated by a physical camera lens, fitting the model
with the EM algorithm requires manual intervention to extract the
blur profile from a calibration target. Therefore, we train a neu-
ral network to estimate the parameters o;, U;, and w; based on a
given pixel depth and focus distance. Since the neural network is
trained automatically, the user effort is constant over an arbitrar-
ily large number of training samples. Since more training samples
allow obtaining a better model the lens blur produced from those
GMMs will closer match the results of physical lenses. Figure 3(c-
GMM:LensNet) demonstrates the improvement over parameters that
have been carried out by the EM algorithm in Figure 3(c-GMM:EM).

Network design. To learn the parameters o;, U;, and w; of the
GMM, we introduce LensNet, a multilayer perceptron (MLP) net-
work, consisting of three hidden fully connected layers with 256



units each. LensNet maps the two-dimensional input, i.e., the object
depth d, and the focus distance dy, to a 3 X K output layer, repre-
senting o;, U;, and w; for the K mixture components, respectively.
Note that the object depth of real objects can be derived from the
DepthAPI provided by ARCore and the depth of virtual objects from
its rendering. We apply Rectified Linear Unit (ReLU) as activation
function in the first two layers and a linear function in the output
layer. The network architecture is illustrated in Figure 3(a). Note
that our current prototype does not change the aperture or the focal
length, since both cannot be changed in many modern smartphones.
However, in the future, we will extend our network to also consider
changing aperture and focal length settings.

Network training.  To learn rendering lens blur, which is similar
to those in the training database, we train the network with the DoF-
renderer in the loop (see Figure 3(b) for an illustration). We render
lens blur using a depth-dependent blur, which takes the rendered
image, the depth map, and the camera parameters from Eq. (1) as
input. LensNet provides a GMM for each rendered pixel which is
used to compute the weights of the blur kernel accordingly.

The network learns the parameters of the GMM by comparing
the corresponding output of the DoF-renderer for a given depth d,
and a focus distance dy to an image in the training database with the
same d, and dy parameters. Therefore, we train the network using
the following loss function:

K
argmin |17+ Y gi(r.c(do)) — 1|, @
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where I denotes the image with the image target in focus, I, the
image with the object out of focus, and * the image convolution that
is applied in the DoF renderer.

We acquire the training data by taking nine out-of-focus and a
single in-focused image of a textured planar object. The objects is
placed at ten different distances w.r.t. the camera. For each distance,
we vary the focus of the camera ten times. In total, we acquire
a data set of 100 images. We calculate the per pixel depth d, by
estimating the six degrees of freedom pose of the planar object
(using ARCore? in our prototype implementation). Since camera
tracking is commonly affected by image blur, we obtain the depth
from the in-focus image and turn off tracking while capturing the
out-of focus images.

Evaluation. We measured the qualitative and quantitative per-
formance of approximating lens blur using LensNet and compared
the results to depth-dependent convolution [5] (referred to as DDC)
and to an implementation of expectation-maximization (EM) [6]
with user interaction for identifying the blur profile.

Figure 3(c) shows visual results and corresponding Peak Signal-
to-Noise Ratio (PSNR) [13] and Structured Similarity Image Metric
(SSIM) [44] values using a near and a far focus distance. To measure
the impact of the approach, independent of its relative size in the
image plane, we compute both metrics only from the pixel values
inside the bounding rectangle of the footprint of the virtual object.
In addition to the 3D MR environments shown in Figure 3(c), we
test our approach on the entire image plane using a lens test chart>.
The lens test chart has been optimized for identifying lens effects in
a photograph and thus, provides a well suited scene for measuring
the performance of a lens simulation.

We compare the simulation results to an image captured with the
physical camera using the simulated focal distance. In an initial
evaluation, we noticed only a small difference between the three
approaches. Since image noise and color differences diminish the
difference, we extended the evaluation setup so that we get measure-
ments that are less affected by sensor and ISP artifacts. Therefore,

2https://developers.google.com/ar
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Table 1: Lens blur approximation. Bold fonts indicate best results. The
captured object is placed at 1.29D in front of the camera.

ds 1.03D 4.05D 6.1D 8.06D 10D
LensNet PSNR | 30.06 32.68 3140 30.60 29.97
SSIM | 0.848 0.912 0922 0.932 0.942
EM PSNR | 27.67 2990 27.85 27.60 26.88
SSIM | 0.845 0910 0921 0931 0.941
DDC PSNR | 2351 23.02 23.13 23.16 22.73
SSIM | 0.843 0.898 0912 0924 0.934

we use projective texture mapping [8] to generate the color informa-
tion of the 3D registered virtual object. As projective texture input,
we use an image where the virtual object is in-focus. To furthermore
reduce camera noise in our test images, we use the average pixel
value from a series of 30 images, captured from the same position,
orientation, and with the same camera settings.

Quantitative results at several focal distances using the lens test
chart are shown in Table 1. The average PSNR values are 31.07dB
for LensNet, 27.91dB for EM, and 23.29dB for DDC. The average
SSIM results are 0.9071 for LensNet, 0.9069 for EM, and 0.8991
for DDC. The GMM-based approaches with K = 3 outperform
the simple DDC technique, whereas LensNet is able to generate
parameters that better approximate the lens blur compared to the
EM approach. We believe this is the result of being able to use many
more samples for training compared to fitting the model with EM.

The runtime for inferring the parameters with LensNet was mea-
sured on average with 1ms for a resolution of 640x480 and 3ms
for a resolution of 1280x720. The averaged runtimes for rendering
blur across all focus distances were 1.46ms and 2.47ms for scene
resolutions of 640x480 and 1280x 720, respectively. All measures
were carried out on a PC with an AMD Ryzen 9 3900X CPU and an
NVIDIA GTX 2080 Ti GPU.

5 LEARNING THE SENSOR

The second network in our pipeline is SensorNet. It receives the
output from the previous stage and adds the characteristics of the
camera’s imaging sensor. Therefore, it adds noise and it maps the
colors from rendered color space to the color space of the real camera
Sensor.
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Figure 4: Architecture of SensorNet. SensorNet is a multilayer per-
ceptron composed of an input layer for the ISO value, exposure, and
three color channels, three hidden layers with 256 neurons each, and
a linear output layer with three outputs values, each for every color
channels. We add per-channel noise by choosing N(o;) according to
the current ISO and exposure settings.

Network design.  To learn the color mapping, we introduce Sen-
sorNet, an MLP with three fully-connected hidden layers with 256
neurons each (see Figure 4). We map a five-dimensional input layer
that represents a pixel’s red, green, and blue color values, in addition
to the ISO value and exposure time, to a three-dimensional output
layer, which represent final red, green, and blue color values. Noise
is added by altering input colors based on the noise model N(o;),
which is derived from the ISO and exposure values. In our prototype
implementation we retrieve ISO and exposure values from the An-
droid camera API. For the output layer, a linear activation function
was used, because we are interested in regressing continuous output
values. For all other layers, we use ReLU activation.
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Figure 5: Results of SensorNet. (a) Central patches show the initial
rendering without correction. (b) The initial renderings have been
transformed by SensorNet without considering noise. (c) The output
of SensorNet when adding noise. Different camera settings have been
caused by changing the lighting while using the camera’s auto-setting.

Network training. We train the mapping with pairs of colors,
which we retrieve by capturing images of a calibration target with
known radiance. We estimate the training loss by computing the
mean square error between the output color values and the target
color values as they appear in the target image color of the captured
color patch. We used the ‘Colorchecker’ calibration chart target from
X-Rite, which provides measurements for 24 different color samples.
To add variation, we capture images while varying the scene lighting,
which causes varying ISO and exposure settings. Therefore, lighting
is implicitly included in the database. We generate twelve different
ISO and exposure settings. We train the model using the Adam
optimizer and a learning rate of le .

We add sensor noise to input colors by assuming normally dis-
tributed noise (o) on each color channel, j € {R,G, B} [19]. Since
our calibration target consists of patches of the same color, we can
deduct the noise from analyzing the color distribution with each
patch. Therefore, in the captured RAW images of the color chart,
we calculate the standard deviation ¢; within each color patch, and
we add the resulting noise model n(o;) to the input of the network.
We use the noise model to add noise to input colors, which the net-
work maps to noisy output colors. We use the training database to
compute a mapping from ISO and exposure values to 6;, which we
use to calculate n(c;) and to noise accordingly to the input colors
at runtime. Note, we add noise to input colors, instead of output
colors, to learn a mapping of noisy input colors to noisy output
colors. Otherwise, a single color would map to several output colors.

Evaluation. Figure 5 shows the rendering on top of the captured
RAW image of our test color chart. Note that we train the network
with colors from the *Colorchecker’ chart from XRite and evaluate
on images of the Digital SG chart, also from X-Rite. In each of the
test images, a synthetic rectangle with a known color is overlaid on
top of the corresponding area in the color chart. This allows us to
see rendered and captured colors next to each other. Figure 5(a-c)
compares results without SensorNet, to results from SensorNet with
and without additional noise. This demonstrates that our approach
is able to estimate color and noise similar to the image sensor of
the physical camera. The variation in ISO and exposure settings
furthermore demonstrates that the approach is robust to lighting
conditions as they have been included in the training database.
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Figure 6: ISPNet consists of two sub-networks. (top row) The first sub-
network maps the incoming camera frame from its YUV representation
to a RAW representation. It also generates a feature vector (bottom
row) which is used to guide the mapping from the output of SensorNet
to the YUV output image.

We also measured the runtimes for processing an image with
SensorNet. For images with 640x480 pixels we measure a average
processing time of 1ms and 2ms for images with 1280720 pixels.
All measurements have been performed on an AMD Ryzen 9 3900X
CPU with an NVIDIA GTX 2080 Ti GPU.

6 LEARNING THE IMAGE SIGNAL PROCESSOR

SensorNet maps the initial rendering to RAW images. We designed
ISPNet to emulate the image signal processor to transform the RAW
color image into a displayable output. The ISP commonly improves
the image quality by applying various image filter operations, such
as white balancing and noise reduction. However, the details of the
ISP are very specific to each camera model and most often unknown
to the public. Therefore, we train a neural network to mimic the
behavior of the processor instead. Thus, adjusting the system to a
new camera only requires training the system with a new database
that has been captured with the camera of interest.

Network design. We built ISPNet upon the dual network pro-
posed by Gao et al. [11], which consists of two networks to first
transform a JPEG-compressed image to a RAW image before the
RAW image is augmented and then transformed back to JPEG-
format. During the JPEG-to-RAW mapping, the network extracts
a feature vector which is used to narrow the solution space for the
RAW-t0-JPEG transformation (Figure 6). Due to space constraints,
we refer the reader to the work of Gao et al. [11] for details about
the architecture.

We adopt this approach to handle input video frames from state-
of-the-art AR frameworks, such as ARCore*, which often use YUV
color space. Therefore, ISPNet receives a simulated RAW-image
of virtual scene elements from SensorNet and transforms it into a
YUYV color image, which includes the image characteristics of the
learned ISP. We derive the feature vector, which is necessary for
converting RAW-to-YUYV, by transforming the input YUV image to
a RAW image first (Figure 6). To display the output of ISPNet we
converted them to sSRGB color space using a gamma value of 2.2.

Network training. Depending on the characteristics of the RAW
image, the ISP often performs several operations using parameters
that it estimates at runtime. Therefore, we need a large variability
in the training data and consequently a large amount of RAW-YUV
image pairs. We trained our prototype with approximately 400 image
pairs that have been captured in many different environments and
at different times during the day. Note that the requirement for a
large variability caused us to introduce an additional network, next
to SensorNet, for learning the ISP. Learning the sensor requires pairs
of known and captured colors, which is very difficult to extract from
a large number of arbitrary scenes.

“https://developers.google.com/ar
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() SensorNet only ISPNet only

Figure 7: ISPNet. (a) The output of SensorNet overlaid on the cap-
tured image. (b) Processing the initial rendering with ISPNet leads to
wrong colors since ISPNet has been trained with RAW images. (c)
ISPNet can produce matching colors by processing the output of Sen-
sorNet. To increase rendering performance we process renderings
only which causes artifacts at the border. (d) We remove artifacts by
processing the rendering and its background around the border.

Evaluation Figure 7 shows the output of SensorNet augmented
on the YUV image that we receive from ARCore (Figure 7(a)).
While the overlay clearly stands out from the background after
processing with ISPNet the results become coherent and difficult
to identify (Figure 7(c)). Note that we need to input simulated
RAW images because ISPNet has been trained to map RAW-to-
YUV. Figure 7(b) demonstrates the error when the initial rendering
is used as input.

Since ISPNet follows the approach of Gao et al. [11], we send
the augmented RAW image through the network. Although this
results in high-quality visual coherence, it requires two passes over
the entire image, which demands a large amount of computational
resources. We achieve a runtime performance of approximately
119ms and 335ms on images with 640x480 pixels and 1280x720
pixels respectively, using a GTX 2080 Ti. Since the performance
scales with the size of the image, we can improve it by sending
only the synthetic overlay through ISPNet. Note, as this approach
only alters the synthetic elements in the scene, it reveals the error
that is introduced by ISPNet (Figure 7(c)) while it increases the
performance relative to the ratio of virtual to real content. In our test
environment, we achieve a runtime performance of approximately
11ms for an augmentation of 338 x39 pixels.

Note that the error is most noticeable at the edges of the over-
lay. As this is introduced by network convolutions that include the
uniform black background in our variation, we can remove the arti-
facts by adding the generated RAW image in the background around
the border of the initial rendering, before sending the combination
through the network. We use an image-based approach similar to
image-based silhouette rendering [30]. However, to not alter the
size of the overlay, we display only the pixels inside the original
footprint.

artificial light

Figure 8: Varying environment light. (top) Artificial office light, and
(bottom) natural daylight is provided to the MR environment. The
Neural Camera is able to adapt the rendering accordingly.

7 DISCUSSION

A lack of documentation for the technical details of the camera
pipeline is common and often prevents an accurate simulation of
the camera pipeline in practice. Instead, our approach has been
designed to easily include new cameras, as long as we can obtain the
images required to train our networks. The focus on generalisability
is what sets apart our work from existing approaches for simulating
the camera characteristics in MR. Most modern camera vendors
do not release the details required for a camera simulation using
existing approaches, like the one proposed by Klein et al. [19]. This
prevents a comparison with our approach for many modern cameras.
Assuming that a simulation-based on vendor knowledge yields an
exact solution in the best case, we test our approach against the exact
solution by comparing it with ground truth images that are captured
by the physical camera itself. Our evaluation focuses on providing
feedback on the efficacy of our approach while also demonstrating
the performance and the effort needed to train the networks. For
example, the results in this paper have been generated using the
back-facing camera on a Google Pixel 2XL. mobile phone and a
Samsung Galaxy S9 mobile phone. Both represent typical devices
used in handheld MR applications for which the vendors do not
provide detailed information to replicate the camera pipeline.
Generating the image database for one Neural Camera required
capturing in various scenes approximately 400 pairs of RAW and
YUYV images for training ISPNet, 100 images for training LensNet,
and 12 images of a color calibration chart while varying the lighting
for training SensorNet. Collecting the data used for generating
the results in this paper took an untrained person approximately
two hours for training ISPNet and 45-60 minutes for all remaining
training data. Training the networks took approximately 30 minutes
for SensorNet, two hours for LensNet, and ten hours for ISPNet on
an AMD Ryzen 9 3900X CPU and an NVIDIA GTX 2080 Ti GPU.
Figure 8 and Figure 9 provide further results to demonstrate the
applicability of Neural Cameras across differently colored scene ob-
jects and different environmental conditions. Notice how the Neural
Camera adapts the rendering to the color of environment light in
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Figure 9: Results. (a) Side-by-side comparison of camera capturings (real) to renderings using the our approach (ours), correctly lit renderings
without camera effects (lit), and renderings using the unlit textured object only (naive). (b) The same renderings but in split view and 3D registered
to the real object. The top triangle shows the rendering, bottom shows captured image. The dashed line in the tiger indicates the split. (c)
Visualization of the RGB-color difference between the rendering and the captured image per pixel. The color map encodes the L2 distance, where

lit naive

blue represents small distances and red large distances.

Table 2: Quantitative results. Bold fonts indicate best results.

Ours Shading Naive
PSNR SSIM | PSNR SSIM | PSNR SSIM
Tiger 22.0 0.78 20.0 0.75 19.1 0.76

Elephant | 22.9 0.70 20.2 0.68 14.8 0.56
Horse 224 0.83 17.6 0.79 19.1 0.79
Pony 234 0.77 19.9 0.76 13.7 0.68

Figure 8. Figure 9 furthermore shows the impact of Neural Cameras
on the rendering of four different 3D scans. The four scanned 3D
objects have been selected to provide color and brightness variations
across the scans. To calibrate the colors in the texture map of the
3D models, we include the small color chart that is used to train the
networks in the scanning process. We use the approach of Knecht et
al. [21] to map texture values to the trained color space of the color
chart. We selected diffuse objects and we estimate the environment
lighting by capturing a 360 high dynamic range light-probe.

Figure 9(a) provides a side-by-side comparison of a camera frame
showing the real object, next to the results of our approach, and the
initial rendering (called ‘naive’). Since our approach considers the
estimated real-world lighting, we also include results of the initial
rendering under the estimated environment lighting (called ‘lit’). In
Figure 9(b), we provide a more direct comparison by showing 3D
registered renderings in a split-view visualization, which is indicated
by a black line in the image showing the tiger. In each image,
the upper half presents the rendering and the lower half shows the
captured frame. Finally, in Figure 9(c), we complement the direct
comparison with an error visualization of the difference between
rendered and captured pixels. Furthermore, we compute PSNR and
SSIM scores of capturing and rendering (Table 2).

The results clearly demonstrate that Neural Cameras can decrease
the visual difference between rendered and captured scene elements.
The naive rendering suffers from incorrect lighting and missing
camera effects, and therefore, shows the highest error and lowest
PSNR and SSIM results. By respecting the environment lighting
the error decreases. By additionally including camera effects, the
results further improve for all objects in our test database. Note that
all measures include registration and shading errors, which result
from an imperfect light and pose estimation. Since all renderings

suffer from the same systematic errors, the comparison provides a
better understanding of the performance than the absolute measures.

8 CONCLUSION

Previous approaches for camera simulation are either limited to
the availability of technical details [19] or require a calibration
target visible in the camera image at runtime [28]. Our approach
is less invasive and, thus, more applicable to unknown cameras.
‘We learn the characteristics of the major components of the entire
camera pipeline offline and apply them to the initial rendering at
runtime. While existing approaches already showed the importance
of simulating the camera characteristics for visual coherence, our
work is paving the way to a practical solution.

By designing Neural Cameras based on traditional rendering tech-
niques and a series of post-rendering processes, it easily integrates
with existing rendering tools, which allows us to use well-known
and often well-optimized rendering methods. Therefore, our ap-
proach can directly improve most MR applications. Also, applica-
tions to mediated reality, such as ClayVison [42] and AR exploded
views [16], which enable animating real-world objects, can highly
benefit from Neural Cameras support coherently rendering 3D MR
environments from novel points of view.

Our results demonstrate the potential of Neural Cameras. How-
ever, we can still improve the results by improving the initial ren-
dering and the virtual scene representation with fine detail, which
is often present in real objects. In addition, we see potential in ex-
tending our approach to include camera characteristics currently not
considered. Furthermore, potential in improving the current process
of capturing the input images by adding user guidance for capturing
databases with high enough variability.
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