
© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at IEEE Xplore.

Exemplar-Based Inpainting for 6DOF Virtual Reality Photos

Shohei Mori , Dieter Schmalstieg , and Denis Kalkofen

Fig. 1: Multi-layer image inpainting for immersive VR photos (depth rendering in insets), in the Alexa Meade Exhibit scene [7]. (a)
Multi-layer scene representations enable immersive VR in real time that supports wide view, stereoscopy, and full 6DOF head motion.
(b) We first interactively delete objects by masking and then (c) fill in remaining holes with an inpainting algorithm designed for such
layered scene data structure.

Abstract—Multi-layer images are currently the most prominent scene representation for viewing natural scenes under full-motion
parallax in virtual reality. Layers ordered in diopter space contain color and transparency so that a complete image is formed when the
layers are composited in a view-dependent manner. Once baked, the same limitations apply to multi-layer images as to conventional
single-layer photography, making it challenging to remove obstructive objects or otherwise edit the content. Object removal before
baking can benefit from filling disoccluded layers with pixels from background layers. However, if no such background pixels have been
observed, an inpainting algorithm must fill the empty spots with fitting synthetic content. We present and study a multi-layer inpainting
approach that addresses this problem in two stages: First, a volumetric area of interest specified by the user is classified with respect
to whether the background pixels have been observed or not. Second, the unobserved pixels are filled with multi-layer inpainting. We
report on experiments using multiple variants of multi-layer inpainting and compare our solution to conventional inpainting methods that
consider each layer individually.

Index Terms—Multi-layer images, inpainting, virtual reality, image-based rendering

1 INTRODUCTION

Viewing natural scenes in virtual reality (VR) requires not only a wide
viewing range, but also support for six degrees of freedom (6DOF) head
motion to make the experience comfortable [62]. Currently, the most
prominent scene representation fitting these requirements is the family
of multi-layer image formats [2, 7, 36]. In a multi-layer image, each
layer consists of pixels with color and transparency channels; pixels are
most opaque in the layer containing the most likely depth of the scene
content. Each layer partly occludes the subsequent layers or represents
a partially translucent material [61]. Therefore, stacking the layers
results in a full scene representation with plausible disparities. The
layers are reconstructed from a depth volume analysis using multi-view
depth maps [49] or, more recently, neural networks [16, 38, 70].

Like with conventional photography, the need for image editing
arises in image-based content for VR viewing. We are especially
interested in the removal of obstructive objects, such as cars, trash bins
in a park, or one’s ex-spouse. Conventional single layer image editing
on the composited image before presentation could be used, but loss of
all depth information at this point in the imaging pipeline would make

• Shohei Mori and Dieter Schmalstieg are with Graz University of Technology.
E-mail: s.mori.jp@ieee.org.

• Denis Kalkofen is with Flinders University and Graz University of
Technology. E-mail: kalkofen@icg.tugraz.at

achieving correct stereoscopy and temporal coherence exceedingly
difficult [60]. Editing the individual layers before compositing removes
unwanted pixels by making them fully transparent, so that compositing
fills in view-dependent background pixels.

However, areas unobserved in all of the original multi-view images
can only fall back to a default background color, leading to unpleasant
“black holes.” For these unobserved areas, we desire to automatically
fill in plausible pixel colors and transparencies. Previous approaches
attempt to inpaint the original multi-view images; such multi-view
inpainting has been formulated only for plane proxies [50], light field
data in a regular grid [31], structure from motion data [3, 63], and
runtime scene reconstruction [41, 42]. To the best of our knowledge,
we are the first to tackle the problem of multi-layer image inpainting of
missing content from unobserved areas.

We address this issue with a two-step inpainting system. Our system
allows the user to interactively crop multi-layer regions and supports
determining regions to be inpainted by occlusion calculation. We for-
mulate the multi-layer image inpainting problem as an approximated
nearest neighbor field (ANNF) search in image space, which defines
patch locations used to fill in holes, followed by blending of the gath-
ered patches, in analogy to conventional image inpainting. In summary,
we present the following contributions to multi-layer image inpainting:

• We present the first approach to inpainting multi-layer scene
representations for hole filling.

• We introduce a multi-layer image inpainting pipeline that includes
an interactive segmentation to expose background pixels and a

1

https://ieeexplore.ieee.org/Xplore/
https://orcid.org/0000-0003-0540-7312
https://orcid.org/0000-0003-2813-2235
https://orcid.org/0000-0002-0359-206X

multi-layer image inpainting algorithm that fills in unobserved
remaining pixels.

• We compare variants of our multi-layer image inpainting algo-
rithm with baseline approaches to validate our design choices.

2 RELATED WORK

This section gives an overview of VR photography and of inpainting.
It provides the motivation for choosing multi-layer images over other
possible scene representations for inpainting. We also discuss possible
extensions of existing approaches to emerging multi-layer data struc-
tures and compare the resulting problems to the ones encountered in
conventional inpainting.

2.1 Photography for VR
Possibly the most successful VR application to date is immersive pre-
sentation of photographic content. Oftentimes, this content is based on
light fields [18, 33] to support stereoscopic viewing, wide field of view,
high-speed rendering, and unrestricted 6DOF head motion [7, 44].

The core idea of light field rendering is to organize multi-view inputs
in a structure with more than n = 2 dimensions and blend them along
light rays passing through the lens of a simulated camera [20,64]. There-
fore, the dimensionality of the data structure determines the degrees of
freedom of head motion in scene content viewing. Structured n≤ 3 data
(e.g., omnidirectional stereo [21] and concentric mosaics [57]) support
only stereoscopic views under restricted panning or 2D locomotion,
while light fields with n = 4 enable 6DOF head motion [33], albeit at a
high memory cost.

Since the rendering process of such data includes multi-ray or multi-
view blending, the results tend to be blurry except at focused sur-
faces [40]. Such synthetic aperture artifacts are well-accepted in the
context of lens camera simulation [20, 64]. However, in commodity
VR displays, the user’s eyes are often modeled as a pinhole cameras,
and such cameras should not have any defocus blur1. Additional depth
information helps to focus the rays back to the known depth [8, 14, 44]
or enables the direct projection of pixels to the depth points [55]. How-
ever, storing a discrete scene depth per pixel does not make sense for
transparent surfaces, which are well represented in the original light
field rendering approach without depth information [32]. Further, on-
line view selection [8] and visibility evaluation [14] can be costly for
VR displays operating at high spatial resolutions and temporal refresh
rates. The use of per-view geometry proxies partially works around
this problem [13, 44], although overlapping proxies for smooth view
interpolation show double images at wrong depths.

Recent work in VR photography [7, 36, 38] instead uses layered
geometry proxies uniformly arranged in diopter space [61] and com-
bines them with per-layer alpha buffers to encode the depth uncertainty
of the observed scene points [49]. This kind of representation lends
itself to analysis by a neural network within a plane-sweep or sphere-
sweep volume formed by multiple calibrated images [2, 16, 70] or a
focal stack [22]. The resulting multi-layer images support 6DOF head
motion and can be rendered efficiently via back-to-front compositing
using a conventional “over” blending operator. Ambiguous scene points
become redundant pixels at different layers, thereby preventing unin-
tended revealing of scene portions occluded behind objects. Depending
on the layers’ geometric shape, multi-layer images are either known as
multi-plane image (MPI) or multi-sphere image (MSI).

Unlike an MPI, a single MSI [7] can cover the entire field of view,
thereby avoiding the problems caused by the need to handle groups of
multi-view images consistently. Specifically, a region of interest (ROI)
needs to be labeled only once (although semi-automated structured
light field segmentation [25] could possibly be used for this purpose).
Moreover, no multi-view blending is required as in the MPI case [38],
and, therefore, no multi-view inpainting [3, 41, 42] based on unreliable
depth information is needed.

1Note that we discuss only VR displays with a fixed display focus, but future
VR displays may find synthetic aperture rendering in immersive VR photos
beneficial. For example, foveated rendering [19, 47] or internal rendering in
varifocal displays [15, 48] could benefit as well.

Neural scene representations based on multi-view images [37, 39] or
light fields [28, 58] have recently emerged as competitors to traditional
image-based models. Especially neural radiance fields (NeRF) [39]
have received a lot of attention. However, the significant scene-specific
training time as well as the implicit scene representation of NeRF
methods make them rather unsuitable for our use case of interactive
scene editing and sampling, although faster turn-around times [43] and
a family with voxel representations [1] will be possible in the near
future [23].

2.2 Image inpainting
Exemplar-based inpainting algorithms find a collection of similar
patches within a given image to fill in specified image holes. Among
traditional exemplar-based methods for image inpainting, Patch-
Match [4,5] is probably the most successful, due to its performance and
flexibility in catering to various image editing problems (e.g., image
retargeting or reshuffling). It is the foundation for the widely used
“content-aware” fill in Adobe Photoshop. Its major difference from
other inpainting approaches, such as diffusion [52] or region [11] meth-
ods, is its efficient ANNF search. Therefore, we use it as a starting
point for our multi-layer method.

Inpainting algorithms based on a convolutional neural network
(CNN) solve the same problem by learning a masked context rather
than collecting pixels to fill holes elsewhere in the image. Reliance on
context rather than exemplars is an advantage if no suitable exemplars
are present in the target image, but a clear disadvantage if insufficient
training examples (i.e., similar images) are available. Therefore, some
variants use the exemplar idea in the sense of contextual attention [67]
and feature-space patch swapping [59] to preserve high-frequency and
coherent content.

Both inpainting methods based on exemplars [9] and on a CNN [46]
have demonstrated their ability to fill larger holes. Both methods
work well with natural scenes, such as dirt, grass, trees, etc., but have
difficulties with purpose-made environments.

These existing methods could be used for multi-layer image inpaint-
ing by inpainting objects in the original multi-view images and then
generating multi-layer images from the intermediary results. For this
purpose, one needs a multi-view labeling tool and an inpainting algo-
rithm that can produce consistent inpainting over multiple images of the
same scene [3,41,42] despite incomplete or unstable depth information
connecting the pixels in these images. Alternatively, a new algorithm
may be designed to work directly on a multi-layer image with color
and transparency channels. In our experiments, we compare these two
alternatives.

2.3 3D inpainting
Because of its implicit depth information, a multi-layer image can be
rendered from an arbitrary viewpoint, like a conventional 3D model
(e.g., a textured mesh or an irregularly sampled volume). Unfortunately,
inpainting a 3D model is more challenging than inpainting a 2D image.
Some specialized methods exist. Textured mesh completion may fill a
hole with a similar mesh [45]. Volumetric inpainting is used to complete
geometric scans [12, 34] or computational tomography [35].

Unlike explicit 3D models, multi-layer images are restricted to dis-
crete layers [49]. Consequently, they do not require any geometry
completion. However, the layers are arranged at discrete distances
from a center of projection, making image resolution dependent on
the layer. Consequently, volumetric inpainting methods designed for
a uniform voxel grid or a light field space [31] do not fit multi-layer
image inpainting.

The most closely related to our work in terms of the underlying
data structure are methods that partially fill in the background lay-
ers [24, 54, 56, 60]. However, the use case pursued by these methods
is noticeably different from ours. Since these algorithms are designed
to only extend the boundaries, attempting to remove an object from
the middle of the scene will create difficulties if empty pixels must be
filled. Besides, some methods rely on depth information [24,56], which
tends to cause distortion in multi-view applications. Therefore, these
approaches are less effective than our multi-layer image representation

2

© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at IEEE Xplore.

Fig. 2: Pipeline of our multi-layer image inpainting. (a) Given a complete multi-layer image, (b) we segment out objects by newly assigning alpha
values to the pixels. The intermediate multi-layer image is rendered in a preview window, so that we can confirm the current inpainting results in 3D.
As front objects are removed, background pixels may pass through the multi-layer image completely. Such unobserved pixels are automatically
selected and filled in at the next inpainting stage. (c) Given the masked multi-layer image, our inpainting algorithm fills in the remaining areas to
complete the multi-layer image. (d) Finally, one may further edit the completed multi-layer image by placing 3D objects.

(see Section 2.1). The only work that uses multi-layer images [60] re-
lies on visible front pixels, which are, in our case, empty and cannot be
anticipated before identifying the inpainted structures2. In multi-layer
images, a large portion of the background tends to be well observed
and encoded in other layers. We only need to apply inpainting to the
unobserved areas which cannot be filled in from farther layers. These
unobserved areas will usually be small, but need to be handled in a
manner that is consistent across all layers of the multi-layer image.

3 METHOD

In this section, we give an overview of our multi-layer image inpainting
pipeline, including data structures and data flow. The pipeline consists
of the following four stages, as illustrated in Fig. 2:

(a) Acquisition of input multi-layer image (MPI or MSI)

(b) Labeling of the ROI

(c) Inpainting of the ROI

(d) VR viewing of the inpainted result

Multi-layer image input. Our input data is a multi-layer image
(Fig. 2a) with a spatial resolution of Nx×Ny and Nz layers, where the
farthest layer has index 1. Each pixel has a color value C(p) ∈ R3

and a transparency α(p) ∈ R at position p = [bx,by,bz]
> ∈ P, where

P ≡ [1..Nx]× [1..Ny]× [1..Nz]. One may generate such a multi-layer
image directly from calibrated multi-view images [7], omni-directional
stereo images [2], or by converting an MPI representation into MSI.

Multi-layer image labeling. We provide an interactive painting
tool that lets the user rapidly segment a volumetric ROI by sweeping
through the layers and painting the ROI into a per-layer mask M in each
2D layer (Fig. 2b). M is a multi-layer alpha mask image indicating
the ROI with continuous values in the range [0,1], which is set to
1 upon the application initialization and specified to 0 for complete
masking. Our tool uses a split screen: A first window shows the layer
where the user is currently painting the mask M, and a second window
shows the resulting multi-layer scene reconstruction. Thus, the second
window provides a preview of the ROI removal without inpainting, i.e.,
CM =C ·M and αM = α ·M for color and alpha channels, respectively
(Fig. 1b). Fig. 3 shows an example case of masking the black poles in
Fig. 1a using our tool.

2Please refer to the supplemental video for examples

A second binary mask U can be computed from αM for those areas
where inpainting needs to fill in synthetic content. For this purpose, we
define the set of all possible view rays r ∈ R(p) which pass through
a sample point p. As a ray r traverses the multi-layer image, it accu-
mulates opacity (aka over-composed alpha [51]). Given an opacity
threshold τ , let the function sτ (r) compute the index of the layer where
the threshold is reached, or zero, if the ray leaves the volume covered
by the multi-layer image without reaching the threshold. The latter case
describes an unobserved ray, which requires inpainting at least one of
the samples it draws from. A sample is marked in U if it is pierced by
at least one unobserved ray (which makes it a candidate for inpainting),
but it does not contribute to any observed ray (changing the sample
does not affect other rays).

U(p) =

0, if ∃r ∈ R(p) s.t. sτ (r) = 0
∧ 6 ∃r ∈ R(p) s.t. sτ (r)≥ bz

1, otherwise.
(1)

Multi-layer image inpainting. Given CM ,αM and U , our inpaint-
ing algorithm fills the specified areas in the multi-layer image and
outputs an inpainted multi-layer image, Ĉ (Fig. 2c). Our inpainting
algorithm is based on an ANNF calculation [4, 5] using multiple patch
error metrics [26, 27]. We explore how different combinations of met-
rics contribute to the quality of multi-layer image inpainting.

Scene viewing and editing. Finally, we render the output multi-
layer image, Ĉ, from back to front with “over” alpha compositing [38],
followed by pixel normalization with the projected alpha values [7].
In our VR application, the user may place 3D objects in the rendered
scene to further alter the scene. In Fig. 2d, we placed two signboards
at the locations where the two black poles and cans were originally
located.

3.1 Approximated nearest neighbor field search
Given the masked color layers and mask layers, we fill in the specified
ROI to complete the multi-layer image without the visual obstacles, Ĉ.
The goal here is to find a bidirectional ANNF, i.e., a mapping f that
describes similar patches in the source and target image.

Since our multi-layer images are uniformly spaced in diopters, the
spatial resolution between samples in the same layer becomes larger
for farther away layers. Hence, copying pixels to a different layer

3

https://ieeexplore.ieee.org/Xplore/

b ca

Fig. 3: Labeling in a multi-layer image. (a) We remove the black poles
whose background areas are encoded into the rear layers. (b) In a
layer image, we consider two types of labels: One for removing frontal
objects (green) and another for specifying areas to be inpainted by our
multi-layer image inpainting algorithm (red). The latter areas can be
automatically calculated, as demonstrated here. (c) The specified area
(red) is encoded in the multi-layer mask and can be previewed instantly.

requires resampling. To minimize quality loss due to resampling, we
only allow pixels to be copied to the same layers. Specifically, we
do not copy patches to different depths, but rather copy a volumetric
patch. Therefore, we hereafter use p and P for 2D locations without
loss of generality. An element of our ANNF, f (p), consists of a 2D
reference location fL(p) from where the patch is copied, and a flipping
matrix fF(p) ∈ diag(±1,±1) [27] to increase the available candidates
to choose from. fF(p) represents non-flipping, horizontal flipping,
vertical flipping, and point reflection. Since a straight line in an MSI
is sliced in a spherical volume, such a line only partially appears in
flipped locations in each layered image. Therefore, we expect that
the flipping by fF can preserve the shape of a line when extended by
copying the structure, which could lead to an increase in the number
of patch candidates. We find an optimized mapping f ∗ based on the
PatchMatch algorithm [4, 5] as

f ∗ = argmin
f

∑
p∈P
R(ρ(f ,p)), (2)

where R(·) is a robust loss function (we use Tukey’s bisquare loss
function [6]), and ρ is a texture dissimilarity term which minimizes the
appearance difference between a patch at p in the target image and a
patch referenced at f (p) in the masked image (i.e., CM). The texture
dissimilarity is a weighted sum of a color dissimilarity term ρC(f ,p)
and a transparency dissimilarity term ρα (f ,p):

ρ(f ,p) = w ·ρC(f ,p)+(1−w)ρα (f ,p) (3)

The color dissimilarity is evaluated over a symmetric V ×V pixel patch
V = {[x,y]> |−V/2≤ {x,y} ≤V/2}, i.e.,

ρC(f ,p) = ∑
v∈V
||CM(p+v)−B(p)CM(fL(p)+ fF(p) ·v)|| (4)

It has been demonstrated [26] that

B(p) = ∑v∈V CM(p+v)
∑v∈V CM(fL(p)+ fF(p) ·v)

(5)

cancels out the intensity differences between pairs of patches. In multi-
layer image inpainting, we expect that such intensity compensation
can also increase the number of patch candidates, since patches can
be sampled over the wide field of view. Finally, the transparency
dissimilarity is evaluated over the same patch:

ρα (f ,p) = ∑
v∈V
||αM(p+v)−αM(fL(p)+ fF(p) ·v)||. (6)

Fig. 4: Mean processing time over the scenes in our dataset. We evalu-
ated the performance of our multi-layer image inpainting algorithm with
different patch metrics and patch sizes. Adding the intensity compensa-
tion requires more time than adding the patch flipping. The processing
time increases with increased patch sizes and varies depending on the
size of mask areas as shown in the standard deviations (SD).

Note that the dissimilarity calculations (eqs. 4–6) are performed in
every layer. We explore the impact of the different patch metrics –
naïve sum of squared differences (SSD), flipping estimation, intensity
compensation, and their combination – in the evaluations in Section 4.

3.2 Merging multi-layer patches
Calculating f also generates a cost volume ρ that has the same di-
mensions as the input. We use ρ to gather weighted patches at each
layer:

Ĉ(f ,p) =
∑

v∈V
L(ρ(p+v))B(p+v)C(fL(p+v)−v · fF(p+v))

∑
v∈V

L(ρ(p+v))B(p+v)
,

(7)
where L(·) is a logarithmic function to convert a SSD cost to a score.

Updating uses an image pyramid consisting of CM , αM , U , and f
components. Since our goal is to find the best ANNF f in multi-layer
image space, we raster-scan the 2D space to update ANNF at each
pyramid level as in conventional 2D image inpainting algorithms (i.e.,
in each iteration, from the top left corner to the bottom right corner and
vice versa).

For initialization, we randomly sample locations and flipping ma-
trices over the pixel locations of U = 0 at the highest pyramid level.
During the raster-scans, we check for better patch candidates at adjacent
pixel locations (propagation) and at random sample locations. If such
a better candidate is found, the current 2D reference location and the
flipping matrix are updated to refer to the candidate. At the end of each
iteration, we update Ĉ as in Equation 7.

To calculate a bidirectional ANNF, we repeat the above ANNF
searching and patch merging for S→ T and T → S in each raster-
scan. This raster-scan continues at each pyramid level until it reaches
a predetermined maximum number of iterations, or the difference
of summed costs to the previous iteration exceeds a given threshold.
However, we update the ANNF only when we find a lower cost over
the depth volume ∑

Nz
i=1 ρ(f , i,p)), which replaces the conventional 2D

cost map given in Equation 2. Upon the termination of the iterations,
we upsample a higher-level result to the lower level.

4 RESULTS AND EVALUATION

In this section, we describe the results achieved with our approach
and compare them to the state of the art. It is difficult to compare
inpainting methods quantitatively, since there is no ground truth for
inpainted areas [41, 46]. Even if we remove a known portion of the
background, we can only expect that inpainting fills the removed area
with plausible patterns, but not that the inpainting result will match
the original background exactly. Hence, a pixel-wise comparison is

4

© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at IEEE Xplore.

Fig. 5: Qualitative comparison in our original MSI dataset (color and depth domains in left and right halves, respectively). We remove the baby buggy
and the ping-pong table from the scenes. The first row shows a rendered frame of an original MSI (Original), two multi-view inpainting results using a
CNN [68] and Photoshop content-aware fill (i.e., MV-CNN and MV-PS, respectively), and a per-layer inpainting result using RGB+α PatchMatch [4,5]
(PL-PM). The second row shows a rendered frame of a masked MSI (Masked), and four variants of our multi-layer inpainting algorithm (SSD+FI:
patch flipping + patch intensity compensation, SSD+F: only patch flipping, SSD+I: only patch intensity compensation, and SSD: naïve SSD). While
the three baseline approaches failed to provide inpainting results with consistent colors and depths, our SSD methods successfully fill the inpainting
areas. We also provide quantitative results of a user study in Section 4.4.

not a meaningful evaluation method. For this reason, we present the
following results: a description of implementation and performance
(Section 4.1), a small ablation study testing different configurations
of our method (Section 4.2), a visual comparison of our method to
the baseline methods (Section 4.3), and a study in which human par-
ticipants subjectively rated our methods against the baseline methods
(Section 4.4).

4.1 Experimental platform
Datasets. We assembled a set of scenes by combining our own

scenes and with an existing benchmark dataset. All scenes are com-
posed of real images, representative of real-world use cases of light
field photography. We did not consider synthetic scenes, since plausi-
ble multi-layer images are difficult to create synthetically – there is no
obvious way to convert surface-based computer graphics models into a
soft representation of translucent images [49].

For our own scenes, we collected unstructured multi-view photos
at seven different outdoor locations. We first calibrate the multi-view
photos of each scene using COLMAP [53]. At each viewpoint, we
generated an MPI [38] and projected all MPI pixels into the closest
MSI layer [36]. Due to the extensive demand for GPU memory and
computation, each MPI was restricted to 600× 400× 96 pixel res-
olution. The composed MSI contains 1024× 1024× 96 pixels. In
addition to our original MSI dataset, we used Google’s MSI dataset [7]
in the lowRes version, which provides image data at 800× 600× 64

or 800×600×96 pixels resolutions and a 3D mesh geometry proxy.
The mean and standard deviation values of the numbers of deleted
pixels and inpainted pixels over the numbers of all image pixels were
8.71×10−3(2.47×10−2) and 2.92×10−3(9.61×10−3), respectively.

Implementation and performance. We implemented the algo-
rithm described in Section 3.1 in C++ and ran it on a desktop computer
(AMD Ryzen 7 3700X, 8 cores, 3.59 GHz base clock, 16 GB RAM,
Windows 10) connected to a Meta Quest 2 headset via an Oculus link
cable for VR viewing. In our implementation, we parallelized inde-
pendent per-layer operations and ran bidirectional ANNF search using
OpenMP. Fig. 4 shows the performance within the dataset. Adding
patch flipping and intensity compensation increases the processing
time. Especially the intensity compensation requires performing con-
volutions over the multi-layer images and therefore takes more time
than the flipping. While our implementation runs on a multi-core CPU,
it could be implemented on a GPU with a highly efficient jump flood
algorithm [69] for a further speed up. We leave this optimization for
future work.

4.2 Comparison of our multi-layer patch metrics
We compared multiple variants of our multi-layer image inpainting
algorithm to investigate the impact of different metrics. All variants
used w = 0.25 and V = 5. The full method, SSD+FI, used both the
flipping fF and the intensity correction B. SSD+I omitted flipping (i.e.,
fF = I); SSD+F omitted intensity correction (i.e., B = 1). A naïve

5

https://ieeexplore.ieee.org/Xplore/

SSD+FI (Ours)OriginalBe
ac

h
Pu

pp
y

Masked PL-PM

Masked SSD+FI (Ours) PL-PMOriginal

Fl
am

es

Fig. 6: Qualitative comparison in Google’s MSI dataset [7] (color and depth domains side-by-side). (top) We removed the puppy together with
its shadow and reflections on the waves. (bottom) We removed the person and the flame. Both scenes have been successfully inpainted by our
multi-layer image inpainting algorithm (SSD+FI). PL-PM presents reasonable inpainting result in the color domain. However, the depth-domain result
reveals its incomplete thin layers.

Table 1: Characteristics of the inpainting methods in our comparison

Method Description Intensity Flip Layers
SSD+FI Full B yes Nz
SSD+F No intensity 1 yes Nz
SSD+I No flipping B no Nz
SSD Naïve 1 no Nz
PL-PM Single layer 1 no 1
MV-PS Photoshop - - -
MV-CNN DeepFill v2 - - -

method SSD used neither flipping nor intensity correction. See Table 1
for a summary of the implementations. Fig. 7 shows a visual summary
of the implementations.

Fig. 5 presents qualitative comparisons of the original, masked, and
inpainted MSI rendering results in two of the seven scenes in our
dataset. Insets are enlargements of the rectangular area indicated in
white in the original MSI. Each subset contains inpainting results in
the color and depth domains on the left and right half, respectively. We
selected these scenes as representative inpainting results. In the Baby
Buggy scene, we expected to remove the buggy and recover the natural
grass patterns. Similarly, in the Ping-Pong table scene, we wanted to
retrieve the metal bench structure after removing the table that partially
occludes the bench.

As can be seen in the second row of each scene, the patch metrics
variants exhibit apparent differences in their inpainting results. As
expected, masking reveals valid portions background layers, especially
noticeable in the Baby Buggy scene. In the Baby Buggy scene, SSD
and SSD+I tend to repeat a particular pattern in the inpainted areas

Fig. 7: Visualization of our multi-layer patch metrics to be studied.

due to the lack of patch samples. We observe that repeated patterns
are enhanced or less blurred in SSD+I, as it can provide intensity-
compensated versions of the chosen patches. Artificial patterns become
less pronounced in SSD+F, which relies on flipping for supplying a
wider variety of patch variations. However, the inpainted areas appear
stretched horizontally and do not match very well to the surrounding
areas. With the SSD+FI, these artifacts become less visible. In the Ping-
Pong table scene, the flipping function enables the complete recovery
of the occluded metallic bench behind the masked table. Subjectively,
SSD+FI generates the visually most pleasing results. Therefore, we
elected SSD+FI as our primary method for further comparisons.

4.3 Comparison of our method to sequential methods

Our main contribution is the extension of exemplar-based inpainting to
multiple layers in a consistent manner. In the sense of an ablation study,
we wanted to investigate how our approach competes with methods
that operate sequentially, one image or layer at a time. To this aim, we
implemented two sequential methods:

6

© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at IEEE Xplore.

1. Per-layer inpainting. This condition, PL-PM, restricts the
inpainting algorithm to operate on only one layer at a time. Even
without considering coherence across layers, the inpainting method
must still be able to handle the alpha buffer of the MSI in addition to the
color buffer. Therefore, we implemented this method by parameterizing
our exemplar-based method with Nz = 1,B = 1 and fF = I.

2. Multi-view inpainting before MSI generation. Unlike the
per-layer inpainting, inpainting of the original views before conversion
into MSI can work on a single masked color image at a time. This sim-
plified requirement enables us to employ any state-of-the art inpainting
algorithm. Hence, we apply two successful algorithms for this pipeline:
the content-aware fill in Adobe Photoshop 2023 as the commercial
state of the art (MV-PS) and DeepFill v2 [68] as a representative CNN
baseline (MV-CNN). Objects were manually labeled in each input view.
While either of these methods is likely to outperform our method in
terms of quality achieved on a single image, we expected that per-view
inpainting would suffer from inconsistencies across multiple image
views and, therefore, wrongly estimated pixel colors and depths in the
resulting MSI. As reported in the literature [66], we observed strong
artifacts in inpainted results at 600×400 pixels when using DeepFill
v2. For those images, we applied 3×3 Gaussian blur before applying
the inpainting algorithm, which removed the artifacts.

We considered the method of Srinivasan et al. [60] as a third competi-
tor, but it would require manually masking front-facing pixels required
for initialization, which is infeasible to do before the depth structure of
the MSI is known. Hence, adopting this method for MSI inpainting is a
complex endeavor left for future work.

Comparison on our dataset Refer again to Fig. 5: Both multi-
view approaches, MV-CNN and MV-PS, successfully fill in the area
without revealing fallback pixels in the Baby Buggy scene, but fail in
the Ping-Pong table scene. The inpainted multi-view images do not con-
tain any fallback pixels, and the MPI generator [38] tries to explain the
multi-view images as a complete MPI. However, as we expected, the
inpainted areas in MSI show blurry artifacts due to mismatched pixel
correspondences when generating an MPI from such independently in-
painted multi-view images and when generating MSI by MPI merging.
Such disagreements over the multi-view images result in strong depth
discontinuities, as evident in the depth channel. Per-layer inpainting re-
sults show stronger depth discontinuities, because the algorithm cannot
maintain any connectivity across layers.

Comparison on Google dataset For the MSI of Google’s
dataset [7], we performed SSD+FI and PL-PM. We omit the other
variants, since SSD+FI performed best on our original dataset (see
also Section 4.4). Fig. 6 shows inpainting results in two scenes of the
dataset. The subsets show the enlarged color and depth renderings
of the same area. In the Beach Puppy scene, we removed the puppy
standing on the reflective surface, i.e., the waves breaking on the shore.
In the Flames scene, we wanted to remove the person and the flames,
which occupy a large part of the scene, leaving some parts completely
unobserved, as apparent in the mask.

While PL-PM delivers high-quality inpainting in the color channel,
its restriction to a single layer corrupts the depth. Consequently, thin
layers darken in the color domain when the fallback pixels are black,
or, otherwise, present a wrong depth.

4.4 User study

Design. We designed a repeated measures within-subjects study
to compare the quality of the inpainting of different inpainting meth-
ods. To that aim, we introduced the independent variable “inpainting
method” with nine conditions: Original (The original MSI with no
inpainting applied), Masked (MSI after the labeling performed), SSD,
SSD+I, SSD+F, SSD+FI, MV-CNN, MV-PS, and ML-PM. We included
Original to confirm that all participants understood the purpose of this
study: Original should always receive the lowest score. As dependent
variables, we collected ratings for inpainting results on a 7-point scale.
All results were obtained by showing videos of a static MSI with a
camera panning in a circle to enhance the motion parallax. Due to the

Fig. 8: User study results. (a) The boxplots (the orange and green bars
represent medians and means) and (b) a significance map. The boxplots
illustrate some important aspects of the collected data: Original obtained
the lowest score, 1, as we expected. Masked follows Original. SSD+FI
surpasses all other approaches. (b) The significance map summarizes
all p values in the statistical analysis.

scale ambiguity of our structure-from-motion method (COLMAP), the
motion range was manually adjusted.

Task. We designed a task to rate inpainting results using the seven
scenes in our dataset, including the scenes in Fig. 5. First, the par-
ticipants were instructed to observe which part of a scene should be
inpainted. We presented a static image with highlighted objects to be
inpainted on the left and a video with a moving camera in the multi-
layer image on the right. Then, we asked the participants to evaluate the
overall quality of the inpainting method. We inquired on the plausibility
of the inpainting, “Does the video show the scene as if there were no
such visual obstacles in the first place?” The participants reported the
rating on a 7-point Likert scale, where seven means most positive.

Apparatus. We used a web-based survey system, Microsoft Forms,
to collect responses from people of different expertise and nationalities,
after an email invitation. Participants were instructed to use at least a
12" screen to ensure reasonable viewing conditions.

Procedure. After receiving textual instructions and signing an
informed consent form, the participants evaluated a series of inpainting
videos. 18 participants (six females, age X̄ = 29.30, SD = 5.90) volun-
teered for the study. On a scale of one to five, where five means best,
the mean self-rated experience of inpainting was 2.33 (SD = 1.14).
The participants scored all cases in random order to avoid any learning
effect. A session took approximately 38 minutes. With 18 participants,
seven scenes, and nine inpainting methods, we collected a total of
18×7×9 = 1,134 ratings.

Hypotheses. From the discussions in the previous sections 4.3
and 4.3, we expected that SSD+FI would receive the best score (H1).
We also expected that Masked would score worst, as it always reveals
the fallback pixels (H2), and that PL-PM would follow as second worst
(H3). Moreover, we expected that our methods (SSD, SSD+F, and
SSD+I) would outperform the multi-view (MV-CNN and MV-PS) and
per-layer (PL-PM) methods, due to the disagreeing depths over the
input multi-view images and inconsistent image inpainting over layers,
respectively (H4).

Results. We evaluated summed scores over the scenes for each
inpainting method. Therefore, the maximum score of a method was
49 (the highest score of 7× 7 scenes). We confirmed that Original
always received the lowest scores. We confirmed the normality but not
sphericity on the collected score data excluding the Original condition.
We therefore performed a Friedman test to examine the effect that the
nine different inpainting methods had on the score. The results showed
that the inpainting method led to statistically significant differences in
rating (χ2(8) = 119.63, W = 0.83, p = 0.00).

7

https://ieeexplore.ieee.org/Xplore/

Fig. 9: Multi-layer scene augmentation by inserting 3D objects in the Alexa Meade Exhibit scene [7] – best seen using red-cyan anaglyph glasses.
This example shows the original multi-layer scene without and with 3D objects, and the inpainted scene without and with 3D objects. When the black
poles are removed from the scene, the inserted artificial signboards appear more coherent in the scene.

Fig. 10: VR viewer. (a) We implemented a viewer running on Unity with
Meta Quest 2. (b) With the thumbstick control, the viewer can navigate
different multi-layered scenes. Please refer to the supplemental video for
the demonstration in action.

We, therefore, performed Wilcoxon signed-rank tests on the data.
Fig.8 summarizes the results as (a) data boxplots and (b) a significance
map. Notably, SSD+FI outperforms the other approaches, includ-
ing our patch metric variants, the two multi-view approaches, and
the per-layer approach. The median differences are 5.5 (p < 0.05),
5.5 (p < 0.05), 4.5 (p < 0.05), 5.0 (p < 0.05), 12.0 (p < 0.01),
13.0 (p = 0.0) in SSD, SSD+F, SSD+I, MV-CNN, MV-PS, and PL-
PM, respectively. Therefore, H1 is statistically supported. Masked
has the worst score among the solutions (p = 0.0), and thus, H2
is also supported. PL-PM is placed at the second worst in median
but contends with MV-PS (median difference: 1.0(p = 1.0)). Com-
pared with MV-CNN, PL-PM shows its inferiority (median difference:
8.0 (p < 0.05)). Therefore, we conclude that H3 is partly supported.
We observe that our patch metric variants outperform MV-PS (me-
dian differences: 6.5 (p < 0.05), 6.5 (p < 0.01), and 7.5 (p < 0.01)
for SSD, SSD+F, and SSD+I, respectively) and PL-PM (median differ-
ences: 7.5 (p = 0.0), 7.5 (p = 0.0), and 8.5 (p = 0.0) for SSD, SSD+F,
and SSD+I, respectively) while there is no clear superiority over MV-
CNN (median differences: 0.5 (p = 1.0) for SSD, SSD+I, and SSD+F).
Consequently, H4 is partly supported. Overall, the results provide us
with statistical evidence for the discussions on the qualitative results in
Sections 4.3 and 4.3.

4.5 VR viewing

We invited five additional participants to collect informal comments
on the VR viewing setup. A system, which uses an NVIDIA GeForce
RTX 3060, runs approximately at 72 Hz on Unity 2020.3.32f1 and
allows viewers to switch between original, masked, and our SSD+FI
results in each scene using the left controller (Fig. 10). All participants
expressed positive impressions of the improved quality in inpainted
results compared to those in a masked MSI. They also noted the stereo-
scopic effects were well preserved after the inpainting and that general
immersive experiences in an MSI were promising. Two participants
specifically commented that the reflections on the wet sandy beach in
the Beach Puppy scene looked coherent and reasonable in the inpainted
results. One participant who works in computer vision pointed out
inconsistent patterns in the inpainted area on the tiling of the Flames
scene.

5 LIMITATIONS AND FUTURE WORK

While our multi-layer inpainting approach shows promising results in
two multi-layer scene datasets, some points need to be addressed to
further improve the quality.

3D labeling tool. The prototype of our labeling tool is based on
manual labor and thus on the user experience with the tool. Automating
this process would definitely increase overall usability. However, to the
best of our knowledge, there is no labeling method specifically designed
for multi-layer images of soft 3D scene representations. Solutions
for 3D segmentation [10] could be used, but detecting segments of,
for example, the ambiguous reflections of the puppy in the Beach
Puppy scene (Fig. 6 top) seems challenging even for state-of-the-art
segmentation methods.

As a single 3D object softly spreads out in multiple layers, it becomes
challenging for humans to label parts of the object represented by
pixels with low alpha values, which are almost invisible. Although
such pixels often exist in so-called “stacked cards” artifacts, these
artifacts tend to be unfamiliar to many users and difficult to clean. An
interactive preview may help to understand the on-edit scenes. However,
understanding which parts across layers correspond to an object in the
rendered view is generally hard.

8

© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at IEEE Xplore.

Lack of patch samples. The primary issue in exemplar-based
inpainting approaches is quality degradation due to the limited number
of patch available in the scene. Therefore, we implemented intensity
compensation and flipping, so that more patch candidates are available
during the patch search. While individual measures have a limited
effect, their combination noticeably improves quality (Section 4.4).
However, overly large inpainting areas inevitably lead to patch deple-
tion. In such a case, inpainted areas appear artificial due to unnatural
patterns or blurry appearance (Fig. 9).

Other problems are caused by image noise. CNN methods for multi-
layer image generation [16, 70] incorporate depth ambiguities from
duplicated pixels behind actual scene points. These ambiguities are
mostly unnoticeable, because they are camouflaged by the alpha com-
positing during multi-layer image rendering. However, for inpainting,
noise outside of the masked area may confuse the patch search, re-
sulting in failure to close the masked regions. Therefore, denoising or
otherwise cleaning multi-layer images can improve robustness.

For multi-layer images with wide viewing angle and strong distor-
tions due to sphere geometry proxies, we suggest to take panoramic
image specific treatments to further increase patch candidates [17].

Camera alignment along the horizon. For best results, one must
ensure that the horizontal axis of the world coordinate system and the
real-world horizon match. Misalignment of the horizontal axes results
in pixel bands bent in a circle, affecting our warping function, fF.
Horizon misalignment rarely occurs in a dedicated camera rig, which
is placed perpendicularly to the ground [7], but a dataset built from
unstructured multi-view images places the world axis arbitrarily. For
our original dataset, we manually aligned the horizon. Gravity-aware
camera registration methods would mitigate this misalignment [30].

Multi-layer video inpainting. Applying our multi-layer image in-
painting algorithm to temporally sequential multi-layer images would
result in multi-layer video inpainting. However, for video inpainting,
a different inpainting strategy would perform better than a straight-
forward extension of our approach. For example, spatio-temporal
inpainting [65] searches patches not only in space, but also in time,
benefiting from moving objects revealing parts of the backgrounds over
time. Furthermore, multi-layer videos are likely to use different data
structures, such as layered meshes [7].

Augmenting multi-layer scenes with 3D objects. After remov-
ing objects from a scene, one may add 3D objects to further enhance
the multi-layer scene (Fig. 2d). We demonstrate this application us-
ing Unity 3D. Fig. 9 presents the original scene, augmented original
scene, inpainted scene, and augmented scene after inpainting at the
same camera pose, shown in red-cyan anaglyph stereo. After removing
the black poles and cans, we placed two artificial signboards. The
signboards are a conventional 3D polygon model. Since the multi-layer
scene representation consists of layered 3D meshes, we are able to
trivially render new 3D objects and layered image content in the same
immersive scene.

Real-time metameric inpainting. The latest metameric inpaint-
ing [29] performs real-time inpainting with less noticeable filled-in
pixels. Such a method could be integrated with our inpainting algo-
rithm, for example, as a subsequent process for our masked rendering
results. However, multi-layer images do not have explicit depth maps
but instead rendered depth maps, which may require special considera-
tion when using them as depth maps.

6 CONCLUSION

This paper presents a novel inpainting pipeline for multi-layer images.
Our evaluations and user study demonstrate how our inpainting method
outperforms single-layer inpainting algorithms on multi-view images.
We explore the impacts of different patch metrics on multi-layer image
inpainting. Multi-layer image inpainting opens up a new research
direction towards editable VR photography.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund FWF (grant no.
P33634).

REFERENCES

[1] Alex Yu and Sara Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa. Plenoxels: Radiance fields without neural networks, 2021.
2

[2] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. Matryodshka:
Real-time 6dof video view synthesis using multi-sphere images. In Proc.
European Conference on Computer Vision (ECCV), pp. 441–459. Springer,
2020. 1, 2, 3

[3] S.-H. Baek, I. Choi, and M. H. Kim. Multiview image completion with
space structure propagation. In Proc. Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 488–496, 2016. 1, 2

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch:
A randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics (TOG), 28(3):24, 2009. 2, 3, 4, 5

[5] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein. The general-
ized patchmatch correspondence algorithm. In Proc. European Conference
on Computer Vision (ECCV), pp. 29–43. Springer, 2010. 2, 3, 4, 5

[6] A. E. Beaton and J. W. Tukey. The fitting of power series, meaning poly-
nomials, illustrated on band-spectroscopic data. Technometrics, 16(2):147–
185, 1974. 4

[7] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec. Immersive light field
video with a layered mesh representation. ACM Transactions on Graphics
(TOG), 39(4):86–1, 2020. 1, 2, 3, 5, 6, 7, 8, 9

[8] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Unstruc-
tured lumigraph rendering. In Proc. Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH), pp. 425–432, 2001. 2

[9] P. Buyssens, M. Daisy, D. Tschumperlé, and O. Lézoray. Exemplar-
based inpainting: Technical review and new heuristics for better geometric
reconstructions. IEEE Trans. on Image Processing, 24(6):1809–1824,
2015. 2

[10] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger.
3d u-net: Learning dense volumetric segmentation from sparse annotation.
In S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, eds.,
Proc. Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pp. 424–432. Springer International Publishing, Cham, 2016.
8

[11] A. Criminisi, P. Perez, and K. Toyama. Region filling and object re-
moval by exemplar-based image inpainting. IEEE Transactions on Image
Processing (TIP), 13(9):1200–1212, September 2004. 2

[12] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner. Scan-
complete: Large-scale scene completion and semantic segmentation for 3d
scans. In Proc. Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 2

[13] A. Davis, M. Levoy, and F. Durand. Unstructured light fields. In Computer
Graphics Forum, vol. 31, pp. 305–314. Wiley Online Library, 2012. 2

[14] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent image-
based rendering with projective texture-mapping. In Eurographics Work-
shop on Rendering Techniques, pp. 105–116. Springer, 1998. 2

[15] C. Ebner, S. Mori, P. Mohr, Y. Peng, D. Schmalstieg, G. Wetzstein, and
D. Kalkofen. Video see-through mixed reality with focus cues. IEEE Trans-
actions on Visualization and Computer Graphics (TVCG), 28(5):2256–
2266, 2022. 2

[16] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker. Deepview: View synthesis with learned
gradient descent. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2367–2376, 2019. 1, 2, 9

[17] V. Gkitsas, V. Sterzentsenko, N. Zioulis, G. Albanis, and D. Zarpalas.
Panodr: Spherical panorama diminished reality for indoor scenes. In
Proc. Conference on Computer Vision and Pattern Recognition Workshop
(CVPRW), pp. 3716–3726, 2021. 9

[18] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.
In Proc. Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pp. 43–54, 1996. 2

[19] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d
graphics. ACM Transactions on Graphics (TOG), 31(6):1–10, 2012. 2

[20] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically reparameterized
light fields. In Proc. Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 297–306, 2000. 2

[21] H. Ishiguro, M. Yamamoto, and S. Tsuji. Omni-directional stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
14(02):257–262, 1992. 2

9

https://ieeexplore.ieee.org/Xplore/

[22] R. Ishikawa, H. Saito, D. Kalkofen, and S. Mori. Multi-layer scene repre-
sentation from composed focal stacks. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 2023. 2

[23] C. Jambon, B. Kerbl, G. Kopanas, S. Diolatzis, T. Leimkühler, and G. Dret-
takis. Nerfshop: Interactive editing of neural radiance fields". Proc. ACM
Symposium on Interactive 3D Graphics and Games (I3D), 6(1), May 2023.
2

[24] V. Jampani, H. Chang, K. Sargent, A. Kar, R. Tucker, M. Krainin,
D. Kaeser, W. T. Freeman, D. Salesin, B. Curless, et al. SLIDE: Sin-
gle image 3d photography with soft layering and depth-aware inpainting.
In Proc. International Conference on Computer Vision (ICCV), pp. 12518–
12527, 2021. 2

[25] A. Jarabo, B. Masia, A. Bousseau, F. Pellacini, and D. Gutierrez. How do
people edit light fields. ACM Transactions on Graphics (TOG), 33(4):4,
2014. 2

[26] N. Kawai, T. Sato, and N. Yokoya. Image inpainting considering brightness
change and spatial locality of textures and its evaluation. In Pacific-Rim
Symposium on Image and Video Technology, pp. 271–282. Springer, 2009.
3, 4

[27] N. Kawai and N. Yokoya. Image inpainting considering symmetric pat-
terns. In Proc. International Conference on Pattern Recognition (ICPR,
pp. 2744–2747. IEEE, 2012. 3, 4

[28] P. Kellnhofer, L. C. Jebe, A. Jones, R. Spicer, K. Pulli, and G. Wetzstein.
Neural lumigraph rendering. In Proc. Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4287–4297, 2021. 2

[29] R. Kuffner dos Anjos, D. R. Walton, K. Aksit, S. Friston, D. Swapp,
A. Steed, and T. Ritschel. Metameric inpainting for image warping. IEEE
Transactions on Visualization and Computer Graphics (TVCG), pp. 1–12,
2022. 9

[30] D. Kurz and S. Benhimane. Handheld augmented reality involving gravity
measurements. Computers & Graphics, 36(7):866–883, 2012. 9

[31] M. Le Pendu, X. Jiang, and C. Guillemot. Light field inpainting prop-
agation via low rank matrix completion. IEEE Transactions on Image
Processing (TIP), 27(4):1981–1993, 2018. 1, 2

[32] M. Levoy. Light fields and computational imaging. Computer, 39(8):46–
55, 2006. 2

[33] M. Levoy and P. Hanrahan. Light field rendering. In Proc. Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 31–42,
1996. 2

[34] J. Li, Y. Liu, X. Yuan, C. Zhao, R. Siegwart, I. Reid, and C. Cadena. Depth
based semantic scene completion with position importance aware loss.
IEEE Robotics and Automation Letters, 5(1):219–226, 2019. 2

[35] J. Li, G. von Campe, A. Pepe, C. Gsaxner, E. Wang, X. Chen, U. Zefferer,
M. Tödtling, M. Krall, H. Deutschmann, U. SchÃ¤fer, D. Schmalstieg, and
J. Egger. Automatic skull defect restoration and cranial implant generation
for cranioplasty. Medical Image Analysis, p. 102171, 2021. 2

[36] K.-E. Lin, Z. Xu, B. Mildenhall, P. P. Srinivasan, Y. Hold-Geoffroy, S. Di-
Verdi, Q. Sun, K. Sunkavalli, and R. Ramamoorthi. Deep multi depth
panoramas for view synthesis. In Proc. European Conference on Computer
Vision (ECCV), pp. 328–344. Springer, 2020. 1, 2, 5

[37] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy,
and D. Duckworth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proc. Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7210–7219, 2021. 2

[38] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ra-
mamoorthi, R. Ng, and A. Kar. Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines. ACM Transactions on
Graphics (TOG), 38(4):1–14, 2019. 1, 2, 3, 5, 7

[39] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In Proc. European Conference on Computer Vision (ECCV), pp.
405–421. Springer, 2020. 2

[40] P. Mohr, S. Mori, T. Langlotz, B. H. Thomas, D. Schmalstieg, and
D. Kalkofen. Mixed reality light fields for interactive remote assistance. In
Proc. ACM Conference on Human Factors in Computing Systems (CHI),
pp. 1–12, 2020. 2

[41] S. Mori, O. Erat, W. Broll, H. Saito, D. Schmalstieg, and D. Kalkofen.
Inpaintfusion: Incremental rgb-d inpainting for 3d scenes. IEEE Trans-
actions on Visualization and Computer Graphics (TVCG), 26(10):2994–
3007, 2020. 1, 2, 4

[42] S. Mori, J. Herling, W. Broll, N. Kawai, H. Saito, D. Schmalstieg, and
D. Kalkofen. 3d pixmix: Image inpainting in 3d environments. In Proc. In-
ternational Symposium on Mixed and Augmented Reality Adjunct (ISMAR-

Adjunct), pp. 1–2. IEEE, 2018. 1, 2
[43] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics

primitives with a multiresolution hash encoding. ACM Transactions on
Graphics (TOG), 41(4):102:1–102:15, July 2022. 2

[44] R. S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and P. Debevec. A
system for acquiring, processing, and rendering panoramic light field stills
for virtual reality. ACM Transactions on Graphics (TOG), 37(6):1–15,
2018. 2

[45] S. Park, X. Guo, H. Shin, and H. Qin. Surface completion for shape and
appearance. The Visual Computer, 22(3):168–180, 2006. 2

[46] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Con-
text encoders: Feature learning by inpainting. In Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544, 2016.
2, 4

[47] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Lue-
bke, and A. Lefohn. Towards foveated rendering for gaze-tracked virtual
reality. ACM Transactions on Graphics (TOG), 35(6):1–12, 2016. 2

[48] Y. Peng, S. Choi, N. Padmanaban, and G. Wetzstein. Neural holography
with camera-in-the-loop training. ACM Transactions on Graphics (TOG),
39(6):1–14, 2020. 2

[49] E. Penner and L. Zhang. Soft 3d reconstruction for view synthesis. ACM
Transactions on Graphics (TOG), 36(6):1–11, 2017. 1, 2, 5

[50] J. Philip and G. Drettakis. Plane-based multi-view inpainting for image-
based rendering in large scenes. In Proc. ACM Symposium on Interactive
3D Graphics and Games (I3D), 2018. 1

[51] T. Porter and T. Duff. Compositing digital images. In Proc. Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 253–
259. Association for Computing Machinery, New York, NY, USA, 1984.
3

[52] M. Richard and M. Y.-S. Chang. Fast digital image inpainting. In Proc.
International Conference on Visualization, Imaging and Image Processing
(VIIP, pp. 106–107, 2001. 2

[53] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 5

[54] A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann, and
B. Masia. Motion parallax for 360 rgbd video. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 25(5):1817–1827, 2019. 2

[55] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images.
In Proc. Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pp. 231–242, 1998. 2

[56] M.-L. Shih, S.-Y. Su, J. Kopf, and J.-B. Huang. 3d photography using
context-aware layered depth inpainting. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 2

[57] H.-Y. Shum and L.-W. He. Rendering with concentric mosaics. In
Proc. Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pp. 299–306, 1999. 2

[58] V. Sitzmann, S. Rezchikov, W. T. Freeman, J. B. Tenenbaum, and F. Du-
rand. Light field networks: Neural scene representations with single-
evaluation rendering. In arXiv, 2021. 2

[59] Y. Song, C. Yang, Z. Lin, X. Liu, Q. Huang, H. Li, and C.-C. J. Kuo.
Contextual-based image inpainting: Infer, match, and translate. In Proc.
European Conference on Computer Vision (ECCV), pp. 3–19, 2018. 2

[60] P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng, and
N. Snavely. Pushing the boundaries of view extrapolation with multiplane
images. In Proc. Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 175–184, 2019. 1, 2, 3, 7

[61] R. Szeliski and P. Golland. Stereo matching with transparency and matting.
International Journal of Computer Vision (IJCV), 32(1):45–61, 1999. 1, 2

[62] J. Thatte and B. Girod. Towards perceptual evaluation of six degrees of
freedom virtual reality rendering from stacked omnistereo representation.
Proc. Electronic Imaging (EI), 2018(5):352–1, 2018. 1

[63] T. Thonat, E. Shechtman, S. Paris, and G. Drettakis. Multi-view inpainting
for image-based scene editing and rendering. In Proc. International
Conference on 3D Vision, pp. 351–359. IEEE, 2016. 1

[64] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy. Using plane+ parallax for
calibrating dense camera arrays. In Proc. Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, pp. I–I. IEEE, 2004. 2

[65] Y. Wexler, E. Shechtman, and M. Irani. Space-time completion of video.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
29(3):463–476, 2007. 9

[66] Z. Yi, Q. Tang, S. Azizi, D. Jang, and Z. Xu. Contextual residual aggrega-
tion for ultra high-resolution image inpainting. In Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7508–7517, 2020.

10

© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at IEEE Xplore.

7
[67] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image

inpainting with contextual attention. In Proc. Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5505–5514, 2018. 2

[68] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form image
inpainting with gated convolution. In Proc. International Conference on
Computer Vision (ICCV), pp. 4471–4480, 2019. 5, 7

[69] P. Yu, X. Yang, and L. Chen. Parallel-friendly patch match based on jump
flooding. In Advances on Digital Television and Wireless Multimedia
Communications, pp. 15–21. Springer, Berlin, Heidelberg, 2012. 5

[70] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnifica-
tion: Learning view synthesis using multiplane images. ACM Transactions
on Graphics (TOG), 37(4), jul 2018. 1, 2, 9

11

https://ieeexplore.ieee.org/Xplore/

	Introduction
	Related work
	Photography for VR
	Image inpainting
	3D inpainting

	Method
	Approximated nearest neighbor field search
	Merging multi-layer patches

	Results and evaluation
	Experimental platform
	Comparison of our multi-layer patch metrics
	Comparison of our method to sequential methods
	User study
	VR viewing

	Limitations and future work
	Conclusion

