
Supplementary Appendices:
Gaze-Contingent Layered Optical See-Through Displays
with a Confidence-Driven View Volume

A Derivation of the Mode Transition Initialization Method

This Section provides a mathematical derivation of Equation 6 in the paper. It is valid if the fo-
cal stack contains two images and their respective focus distances correspond to the locations
of the display layers. Further, for sake of simplicity, we start by assuming a layered display
with an additive image formation process. However during the derivation, we will provide a
method to apply it to multiplicative display as well. For a two-layer additive display, we for-
mulate the task of transforming a focal stack to two layer patterns as an optimization problem
of the following form [1, 3, 4]:

pi = argmin
pi, i∈{1,2}

N=2∑
n=1

||r̂n −
V=2∑
v=1

pi ∗ cv,n||, s.t. 0 ≤ pi ≤ 1. (1)

here pi refers to the i− th panel, rn refers to the n− th image of the focal stack, and cv,n refers to
the circle-of-confusion on the v− th, v ∈ {1; 2} panel when focusing to the n− th image. Using
the Simultaneous Algebraic Reconstruction Technique (SART) to solve this problem yields the
following iterative update routine:

p
(m+1)
i = p

(m)
i +

1

V N

N=2∑
n=1

wi,n

(
r̂n −

V=2∑
v=1

p(m)
v ∗ cv,n

)
∗ cn,i (2)

where wi,n refers to the weight given to the n − th focal stack image when updating the i −
th panel. Note, the retinal image rn of the user when focusing to r̂n (at the m-th iteration)
amounts to:

r(m)
n =

V=2∑
v=1

p(m)
v ∗ cv,n. (3)

Since the focus distance of the n − th image of the focal stack corresponds to the location of
the i − th layer, the circle of confusion ci,n

∣∣
i=n

collapses to zero. Hence, for each layer, we can
rewrite Equation 3 to:

r
(m)
i

∣∣∣
i=n

= p
(m)
i + p

(m)
j ∗ cj,i, (4)

where j = 1−i. Further, using the focal image weighting scheme of Ebner et al. [1], which they
have shown leads to faster convergence and improved image quality, we apply the weightings:
wi,i = 2, wi,j = 0. Hence, each layer is updated only with its corresponding image of the focal
stack, and Equation 2 becomes:

p
(m+1)
i = p

(m)
i +

1

2

(
r̂i − (p

(m)
i + p

(m)
j ∗ ci,j)

)
. (5)

Imagine now a display with multiplicative image formation process and the user focusing
on panel pi. Each bundle of light that passes through a single pixel in panel pi passes a range
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of pixels in panel pj . This range corresponds to the circle of confusion cj,i on the j-th panel
when focusing to the i-th panel. Hence, this process can be formulated as:

rai =
∑
c∈C

L(a, c) =
∑
c∈C

(pai · pcj), (6)

where a light ray L(a, c) landing on an arbitrary pixel a on the retinal image ri, passes through
a pixel pai in pi and a range of pixels in pj within C. Here, C is the set of pixels in pj within an
area spanning the circle of confusion cj,i.

Taking the log of the light ray yields:

log(L(a, c)) = log(pai · pcj) = log(pai ) + log(pcj) = p̃ai + p̃cj . (7)

Consequently, the entire log-transformed layer pattern for the i − th layer is referred to as p̃i.
Analogous, we can define the corresponding log-transformed focal stack image, as r̃i.

Using the log-transformed variables, we can formulate the update rule of Equation 5 for
multiplicative layered displays as well:

p̃
(m+1)
i = p̃

(m)
i +

1

2

(
r̃i − (p̃

(m)
i + p̃

(m)
j ∗ ci,j)

)
, (8)

which corresponds to Equation 6 in the main document.

The decomposition approach introduced in the paper consists of the following Equations:

p̃
(m)
i =

⌈m/2⌉∑
k=1

ηk · r̃i
k−1∗ cj,i

k−1∗ ci,j −
⌊m/2⌋∑
k=1

ζk · r̃j
k−1∗ cj,i

k∗ ci,j , (9)

ηk =
1

2m

2m −
2(k−1)∑
µ=0

(
m

µ

) , ζk =
1

2m

2m −
2k−1∑
µ=0

(
m

µ

) , (10)

⌈m/2⌉∑
k=1

(ηk − ζk) = 0.5. (11)

Prove of Equality The relationship between Equation 9 and 5 can be proven by induction.
The first two iterations compute recursively as:

p̃
(1)
i = 0.5 · r̃i, (12)

p̃
(2)
i = 0.75 · r̃i − 0.25 · r̃j ∗ ci,j . (13)

Similarly, using Equation 9 and m = 2:

p̃
(2)
i = η1 · r̃i − ζ1 · r̃j ∗ ci,j . (14)

Using Equation 10, we determine that η1 = 0.5, ζ1 = 0.25, hence Equation 14 and 13 agree.
Furthermore, Equation 11 holds. Next, suppose that the equivalence holds for some (even)
m = 2l, l ∈ N. Then, applying Equation 9 to compute p̃i(m+1) yields

p̃
(m+1)
i =

m/2+1∑
k=1

ηk · r̃i
k−1∗ cj,i

k−1∗ ci,j −
m/2∑
k=1

ζk · r̃j
k−1∗ cj,i

k∗ ci,j

=

m/2∑
k=1

ηk · r̃i
k−1∗ cj,i

k−1∗ ci,j −
m/2∑
k=1

ζk · r̃j
k−1∗ cj,i

k∗ ci,j

+ηm/2+1 · r̃i
m/2∗ cj,i

m/2∗ ci,j .

(15)
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On the other hand, if we substitute Equation 5 into Equation 9, we obtain:

p̃
(m+1)
i =

1

2

(
p̃
(m)
i + r̃i − p̃

(m)
j ∗ ci,j

)
=
1

2

m/2∑
k=1

ηm,k · r̃i
k−1∗ cj,i

k−1∗ ci,j −
m/2∑
k=1

ζm,k · r̃j
k−1∗ cj,i

k∗ ci,j

+
r̃i
2

−1

2

m/2∑
k=1

ηm,k · r̃j
k−1∗ ci,j

k−1∗ cj,i −
m/2∑
k=1

ζm,k · r̃i
k−1∗ ci,j

k∗ cj,i

 ∗ ci,j .

(16)

In this expression the weights are indexed by m (in addition to k) to distinguish between dif-
ferent decomposition orders. Re-arranging the sums yields

p̃
(m+1)
i =

1

2

m/2∑
k=1

(
ηm,k · r̃i

k−1∗ cj,i
k−1∗ ci,j + ζm,k · r̃i

k∗ ci,j
k∗ cj,i

)
+

r̃i
2

−1

2

m/2∑
k=1

(
ηm,k · r̃j

k∗ ci,j
k−1∗ cj,i + ζm,k · r̃j

k−1∗ cj,i
k∗ ci,j

)

=

m/2−1∑
k=1

(
ηm,k + ζm,k−1

2
· r̃i

k∗ cj,i
k∗ ci,j

)
+

ηm,1

2
r̃i +

ζm,m/2

2
· r̃i

m/2∗ ci,j
m/2∗ cj,i +

r̃i
2

−
m/2∑
k=1

(
ηm,k + ζm,k

2
· r̃j

k∗ ci,j
k−1∗ cj,i

)
.

(17)
Using this form, it is evident that the coefficients of the convolutions satisfy

ηm+1,k =
ηm,k + ζm,k−1

2
, (18)

ζm+1,k =
ηm,k + ζm,k

2
. (19)

If we define ζm+1,0 = 1 and ηm+1,m/2+1 = 0, the update for p̃i(m+1) can be written as

p̃
(m+1)
i =

m/2∑
k=1

(
ηm+1,k · r̃i

k−1∗ cj,i
k−1∗ ci,j

)
+ ηm+1,m/2+1 · r̃i

m/2∗ ci,j
m/2∗ cj,i

−
m/2∑
k=1

(
ζm+1,k · r̃j

k∗ ci,j
k−1∗ cj,i

)
,

(20)

which is identical to Equation 15. Thus, the equivalence holds for even m. An analogous
argument applies for the case m = 2l + 1, with l ∈ N. Starting from Equation 9, one obtains

p̃
(m+1)
i =

(m+1)/2∑
k=1

ηk · r̃i
k−1∗ cj,i

k−1∗ ci,j −
(m+1)/2∑

k=1

ζk · r̃j
k−1∗ cj,i

k∗ ci,j

=

(m+1)/2∑
k=1

ηk · r̃i
k−1∗ cj,i

k−1∗ ci,j −
(m−1)/2∑

k=1

ζk · r̃j
k−1∗ cj,i

k∗ ci,j

+ζ(m+1)/2 · r̃j
(m−1)/2∗ cj,i

(m+1)/2∗ ci,j .

(21)
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Substituting Equation 5 into Equation 9:

p̃
(m+1)
i =

1

2

(
p̃
(m)
i + r̃i − p̃

(m)
j ∗ ci,j

)
=
1

2

(m+1)/2∑
k=1

ηm,k · r̃i
k−1∗ cj,i

k−1∗ ci,j −
(m−1)/2∑

k=1

ζm,k · r̃j
k−1∗ cj,i

k∗ ci,j

+
r̃i
2

−1

2

(m+1)/2∑
k=1

ηm,k · r̃j
k∗ ci,j

k−1∗ cj,i −
(m−1)/2∑

k=1

ζm,k · r̃i
k∗ ci,j

k∗ cj,i


=

(m−1)/2∑
k=1

ηm,k + ζm,k−1

2
· r̃j

k−1∗ cj,i
k−1∗ ci,j +

ηm,1

2
· r̃j +

r̃i
2

−
(m−1)/2∑

k=1

ηm,k + ζm,k

2
· r̃j

k−1∗ cj,i
k∗ ci,j −

ηm,(m+1)/2

2
· r̃j

(m−1)/2∗ cj,i
(m+1)/2∗ ci,j .

(22)

Using the identities of Equations 18 and 19, this is equivalent to Equation 21. Hence, the Equa-
tion also holds for odd m.

Finally, we verify that the recursive relations in Equations 18 and 19 are consistent with the
closed-form expression provided in Equation 10. Starting with ηm+1,k we have

ηm+1,k =
1

2m+1

2m −
2(k−1)∑
µ=0

(
m

µ

)+
1

2m+1

2m −
2(k−1)−1∑

µ=0

(
m

µ

)
= 1− 1

2m+1

2k−2∑
µ=0

(
m

µ

)
+

2k−3∑
µ=0

(
m

µ

) .

(23)

Using Pascal’s rule (
m

µ

)
+

(
m

µ+ 1

)
=

(
m+ 1

µ+ 1

)
, (24)

we can combine subsequent terms in the two sums (note that
(
m
0

)
=

(
m+1
0

)
= 1) to obtain

ηm+1,k = 1− 1

2m+1

2k−2∑
µ=0

(
m+ 1

µ

)

=
1

2m+1

2m+1 −
2k−2∑
µ=0

(
m+ 1

µ

) .

(25)

A similar derivation for ζm+1,k leads to

ζm+1,k = 1− 1

2m+1

2k−2∑
µ=0

(
m

µ

)
+

2k−1∑
µ=0

(
m

µ

)
=

1

2m+1

2m+1 −
2k−1∑
µ=0

(
m+ 1

µ

) .

(26)

Thus, for m + 1 the expressions in Equations 25 and 26 match the closed-form weights given
in Equation 10.
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An interesting property of the convolution coefficients ηm,1 and ζm,1

ηm,1 =
2m − 1

2m
,

ηm,1 =
2m − 1−m

2m
,

(27)

is, that the numerator of ηm,1 corresponds to the series of Mersenne numbers (OEIS: A000225),
while the numerator of ζm,1 corresponds to the series of Eulerian numbers (OEIS: A000295).

B Additional Results

B.1 Scenes used for evaluation

The three scenes used throughout the paper for evaluation are depicted in Figure B.1.

Figure B.1: The three scenes used in the evaluation.
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B.2 Additional qualitative results

This Section contains qualitative results for scenes a-c with user focus distances of 0.1 dpt, 1
dpt, and 3 dpt. Similar to Figure 9 in the main document, the images contain comparisons
between three focus distance offsets ϵu for different display types. “Conventional” refers to
a single plane display with an image plane at 0.5 dpt, “lf stereoscope” refers to a light field
display with static layers presented by Huang et al. [2], a varifocal display, and two of our
approaches. “ours worst” represents the unlikely case in which the ground truth focus distance
of the user is located significantly outside of the view volume. In “ours best”, the focus distance
offset ϵu corresponds to half of the view volume. SSIM maps for the corresponding images are
shown on the botton.
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