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Multi-layer Scene Representation from Composed Focal Stacks

Reina Ishikawa , Hideo Saito , Denis Kalkofen , and Shohei Mori

Fig. 1: We propose representing scenes as composed focal stacks, which we compute from registered images, for view synthesis. Our
approach enables diminishing local artifacts such as motion blur and ISO noise, to improve multi-layer scene representations. (a) Our
approach allows the user to randomly capture photos in a continuous motion. (b) From the captured images, we compose a synthetic
focal stack, from which we derive a multi-layer scene representation using a CNN. (c) The outcome of the network is a multi-layer scene
representation, which enables continuous viewpoint changes. (d) Our approach supports several applications, including 6 degrees
of freedom wide field of view scene representation, which enables photo-realistic VR applications (left), scene representations from
underexposed images (right), and multi-layer image generation from captured focal stacks (top).

Abstract—Multi-layer images are a powerful scene representation for high-performance rendering in virtual/augmented reality (VR/AR).
The major approach to generate such images is to use a deep neural network trained to encode colors and alpha values of depth
certainty on each layer using registered multi-view images. A typical network is aimed at using a limited number of nearest views.
Therefore, local noises in input images from a user-navigated camera deteriorate the final rendering quality and interfere with coherency
over view transitions. We propose to use a focal stack composed of multi-view inputs to diminish such noises. We also provide
theoretical analysis for ideal focal stacks to generate multi-layer images. Our results demonstrate the advantages of using focal stacks
in coherent rendering, memory footprint, and AR-supported data capturing. We also show three applications of imaging for VR.

Index Terms—Multi-layered scene representation, focal stack, view synthesis, AR-supported imaging

1 INTRODUCTION

View synthesis from multi-view input has been in great demand for
decades, starting from image-to-image view warping [49] to plenoptic
sampling via explicit proxies [6, 26], and recently neural networks [52].
The selection of proxies for efficient pixel resampling and interpolation
has been one of the major design decisions that users need to make.
Virtual reality (VR) and augmented reality (AR) especially require high-
quality and -performance rendering with limited hardware resources
so that the system does not impose any uncomfortable experiences
[53]. Apart from the implicit representation of neural radiance fields
(NeRF), which requires per-scene training, recent research uses a multi-
layer scene representation [13, 33], which consists of explicit RGB+α

textured layer proxies such as front-facing planes (i.e., multi-plane
image (MPI)) [51, 60], and co-axial spheres (i.e., multi-sphere image
(MSI)) [1, 5] for efficiency. Every layer is composed of the furthest to
closest layers, and thus, the data structure allows access to the well-
studied raster-scan rendering pipeline with parallel computing on GPU.
Multi-layer scene representation, therefore, performs as an efficient
light field representation at discrete depth samples [33].

Convolutional neural network (CNN) enables to analyze pixel-wise
scene depth certainties from multi-view resources and to encode them as
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alpha values (i.e., opaqueness) more robustly than handcrafted feature
description [51, 60]. User captured images from a tracked camera (e.g.,
AR-supporting smartphones), however, can be a major error source even
with AR visual guidance [33], and thus, careful and time-consuming
calibration [47] has been required. With multiple registered images
(N ≥ 2), occluded areas are partly observed, and the scale is known
as baseline lengths [33], and more input images may potentially lead
to improved robustness [37] in inference. Alas, the current network
is designed for the nearest N = 5 views following the strict capture
guidance [33], and thus, those networks may suffer local errors in
captured images when inferring MPIs. The design bottleneck comes
from a significantly increased memory footprint as CNN receives N
plane sweep volumes (PSVs), which increases an original image by
D of the number of layers. Another solution takes more views into
account with sacrificed rendering speed [56].

To advantageously take more images into MPI generation, we pro-
pose using a focal stack that can be composed of the multi-view inputs
and thus has a constant size tensor regardless of the number of registered
images (Fig. 1). The potential impact of this rather straightforward ap-
proach is not only the reduced memory footprint but also the robustness
against locally erratic poses and images over the captured scene. Our
framework allows accepting an arbitrary number of images. Therefore,
the resultant focal stack input can lower local impacts by composing
them with the other more accurate registered images, which results in a
coherent rendering over the recorded area.

Multi-layer scene generation via focal stack imaging can also bring
us better usability in capturing and opens up new applications. Multi-
view inputs that satisfy sampling theory in the light field need to be
captured in a 2D grid, where AR 3D annotations guide the user [33].
Contrary to strict camera positioning, focal stack synthesis allows us
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to randomly and casually capture images on a 2D plane because the
system arranges focal stacks on a precise 2D grid upon the focal stack
synthesis. Inside-out multi-view MPIs for immersive VR is clearly a
promising application. In the context of denoising, focal stack imaging
allows us to create MPIs with under-exposed images (e.g., in a dark
room) or a lens focal stack with a large aperture.

The contributions of this paper can be summarized as follows:
• We propose a system that composes a focal stack from multi-

view images to subsequently infer a multi-planar image (MPI)
representation of the scene from it. The intermediate focal stack
representation allows for diminishing the impact of motion blur,
iso-noise, and tracking errors,

• discuss theoretical bounds of transforming focal stacks to MPIs,

• demonstrate the advantages of our approach for MPI generation
from focal stacks. In particular, we discuss its robustness against
pose and image noises, its benefits to the memory footprint, and
the data capturing process, and

• demonstrate and discuss the benefits of our approach for photo-
realistic VR applications.

Limitation. In this paper, we conduct experiments using both syn-
thetic and realistic images to demonstrate the effectiveness of the pro-
posed method. Note, however, that the focal stack used in the proposed
framework is only a part of an original light field [43]. With the trade-
off, we show the robustness, usefulness, and wide application range of
the focal stack imaging brought to MPI generation.

2 BACKGROUND AND RELATED WORK

Lightweight dense scene representation may drive many VR/AR ap-
plications. 3D mesh representation is one of the most efficient data
structures to be rendered with commodity hardware (i.e., GPU). How-
ever, its reconstruction of natural scenes has been a challenging topic in
the vision and graphics communities [4, 47–49]. Multi-layer scene re-
construction [13, 60] is an emerging technology that may overcome the
tradeoff between the efficiency and fidelity of imaging and rendering.

2.1 Multi-layer Scene Representation
Multi-layer scene representations use a layered mesh, either as MPI
or MSI, with RGB+α textures. The textured proxies are warped and
blended from back to front using alpha compositing with the “over”
operator so that the stacked proxies represent full parallax under 6
degrees of freedom camera motion. Given differently shaped proxies
that sweep the volumetric space, variants can infer MPI or MSI from a
perspective [31,54], stereo [1,50,60], and multi-view images [13,33,51].
Combined with more explicit depth geometry prior, we could expect
improved rendering quality with additional costs [10, 21, 28, 61]. Since
multi-layer scene representation is a general 3D scene representation
empowered by conventional and thus lightweight rendering pipeline, its
applications in VR/AR range from 3D scene photos [13] and videos [5]
for remote user assistance [45] to a dense scene reconstruction for near-
eye displays [12]. Compared to the NeRF implicit representation [34],
the multi-layer scene representation is explicit (cf. [19, 36]) and thus
editable and plenoptic sampling theory is known valid [33].

The multi-layer scene representation was invented by Szeliski and
Golland [51]. A more recent approach by Penner et al. explains the
alpha values as depth certainties from multi-view depth maps (i.e.,
soft reconstruction [42]). Zhou et al. let a CNN analyze and encode
depth certainties as pixel alpha values [60], and since then, CNNs
have been the best-practical solution to this problem rather than the
previous hand-crafted features. CNNs use per-view PSVs so that the
network can “see” the disparities from the multi-view data of a light
field. However, the available memory practically limits the number of
input views for the network inference since the input ends up with a
concatenated N view PSVs. Thus far, a baseline approach, local light
field fusion (LLFF), allows N ≤ 5 views. DeepView [13] can accept
more than three viewpoint images, although the required number of
CNNs linearly increases.

Instead of having PSV inputs, we propose a framework that takes
a digitally composed focal stack to allows using significantly more
images (5 ≪ N) to diminish the local noises in input registered images.

2.2 Light Field Acquisition
The light field represents a scene from 4D ray samples on a proxy,
usually two planes. Instead of a direct 4D array [14, 26], we can use
data structures that we are spatially more familiar with, such as multi-
view images [18, 40]. The quality improves with more input views and
appropriate spatial sampling [8,38]. Multi-layer scene representation is
more efficient by means of reduced spatial sampling views by the factor
of the number of layers, D, and cheap for rendering [33]. Since multi-
layer scene representation is an approximated light field with discrete
depth samples, any input data modality for light field reconstruction
can potentially be the input for multi-layer scene data reconstruction.
The data structures include multi-view images [6, 11, 15, 26], lenslet
images [39], coded aperture images [17], and focal stacks [12, 43].

Among those possible options, we use a set of registered multi-
view images as an initial input for MPI generation since it allows
covering a wider range of the scene without special optics such as
coded aperture and mechanical or liquid varifocal lenses followed by
pixel resampling for scale corrections. Nonetheless, our network allows
using an optically photographed focal stack. We demonstrate such a
case as one of our applications (See Section 6).

2.3 Focal Stack Imaging
A focal stack consists of a set of images exposed at different focus
distances. When a scene point is in focus (i.e., within the depth of
field), the point appears clear within a pixel, while when it is out of
focus, the point appears larger than a pixel. Multiple rays in a captured
scene passing through a lens with an aperture are eventually encoded
into an image. Focal stack is, therefore, when structurally captured,
an approximation of a light field [43]. We can capture focal stack
optically with varifocal lens [12,22,61], shifting imaging sensor [25], or
synthetically with a synthetic aperture photography [18, 39, 55]. Given
calibrated images including a reference view, all images are warped
to and merged on the reference view image plane back-projected to
the space at a distance. Synthetically differently focused images are
obtained by varying the plane distance uniformly in diopter distance
for efficient capturing.

Therefore, the task for our deep neural network (DNN) is similar to
the auto-focus function of a camera, which finds an optimal distance
that falls within a depth of field with a modulated lens. Instead of a
specific point in space, with a synthetic focal stack, our DNN must
describe the certainty of the depth estimation that may distribute over a
set of layers so that points are rendered when “over” alpha composited.

Our goal is to implement such a DNN and explore its practical
configurations, which include different spatial camera arrangements,
the number of input registered images, and tolerance against image
noise and registrations.

2.4 Expectations to Synthetic Focal Stack
Recall that the current baseline approach accepts per-view PSVs [33],
which ends up with W ×H ×C×D×N pixel data for a CNN input,
where each denotes width, height, channel, the number of MPI layers,
and the number of images, respectively. One of the clear advantages of
the use of focal stacks is that we can reduce the input by N, regardless
of the number of input images, for MPI inference. With the increased
multi-view inputs, we expect more stable multi-layer scene recon-
struction, which may follow the same analogy to dense simultaneous
localization and mapping (SLAM) [37] compared with keyframe-based
SLAM [23]. With more images with shorter baselines, our network
should be able to disambiguate points in the sense of triangulation or
defocus analysis.

We expect more robust and consistent multi-layer scene reconstruc-
tion over the input views, from the synthetic composition of multiple
scene images. Prolonged exposure or multiple exposures is a well-
known photography trick to take a noise-free image. In the focal stack
composition, misaligned photos are naturally down-weighted by the
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Fig. 2: Composing focal stack from multi-view registered images under different local noises (Motion blur, ISO noise, and positional noise). The first
row shows close-up example noisy images near a simulated noise (See Section 5.5 for the details). The second row shows composed focal stacks
from images, including the noisy images. The focal stack composition diminishes the apparent noises.

other more accurately registered photos if the latter is the majority
(Fig. 2).

3 VIEW SYNTHESIS PIPELINE

Our view synthesis pipeline consists of three steps, including video
capture with poses and focal stack composition from the registered
video frames (Section 3.1), CNN-based MPI generation (Section 3.2),
and scene rendering with the MPIs (Section 3.3).

3.1 Posed Video Capture and Focal Stack Composition
Our network accepts focal stacks composited from registered images
and thus allows the user to casually capture consecutive frames (i.e.,
a video) according to a predetermined 3D proxy. Instead of sparsely
and strictly locating images one by one in 3D space (cf. prescriptive
sampling guidelines [33]), our system automatically selects necessary
image samples for the user among the recorded frames. As we describe
in Section 4, the aperture size of a synthetic aperture camera [55]
and baseline lengths between generated MPI cameras must satisfy the
underlying plenoptic sampling theory [8, 33].

We create a synthetic focal stack from N registered images, Ik =
{Ik, [Rk|tk],Kk} ∈ IMV, that fall within a valid aperture radius, A/2.
Here, Ik is an image, Rk and tk represent a relative SO(3) rotation
matrix and 3D translation vector to a synthetic aperture camera, respec-
tively, and Kk is a 3×3 camera matrix. A resultant focal stack consists
of D images placed at zi (i ∈ {0,1, ...,D−1}, zi > zi+1) ∈ z distances.
To this end, all registered images are projected to every image plane at
zi of a target synthetic aperture camera, Itgt, summed up, and normal-
ized by the number of projected pixels on each pixel. Given a target
synthetic aperture camera with Ktgt and the forward-facing direction
ntgt, such an image-to-image projection is calculated by a Homography
matrix of

Hk,tgt = Ktgt
Rk,tgt − tk,tgtnT

tgt

zi
K−1

k . (1)

Thus, the normalized pixel color ci(ũ) at ũ = [u,v,1]T can be repre-
sented as

ctgt(ũ) =
∑

N−1
k=0 Ik(H−1

k,tgtũ)

∑
N−1
k=0 1k(H−1

k,tgtũ)
, (2)

where 1 is an indicator function that returns 0 or 1:

1k(u) =

{
1 if u lays within kth camera FoV
0 otherwise

. (3)

We denote the above focal stack rendering process as

RFS(IMV, z)→ IFS, (4)

where IFS is the resultant focal stack with W ×H ×3×D dimensions.

3.2 Multi-Layered Scene Generation
After generating a synthetic D-layer focal stack, we feed it into a CNN
similar to U-Net [46], as a widely used baseline, to infer D-layer MPI.
Further discussions on other network design choices to be explored are
presented in Section 7.

Network structure. Since the up-convolutions in the original U-
Net are known to cause checker pattern artifacts in the output, we
replaced the up-convolutions with simple 2×2 bilinear up-sampling.
We assume the output MPI layers are also equally spaced in inverse
depth from back to front. We trained our network to output RGBα

values at each pixel on each depth layer of such an MPI. Therefore, the
inference is represented as

N (IFS)→ IMPI, (5)

where N denotes our network and IMPI is a W ×H ×4×D MPI.

Training objectives. We implement a differentiable renderer to
optimize our network with respect to the rendered view. To render a
novel viewpoint image, we use the “over” alpha composition [44]:

ROver(IMPI) :=
D−1

∑
i=0

(
CMPI

i ∗α
MPI
i ∗

D−1

∏
j=i+1

(
1−α

MPI
j

))
, (6)

where CMPI
i and αMPI

i are color and alpha values of ith MPI layer,
respectively, i.e., (Ci, αMPI

i ) ∈ IMPI. Generalizing the renderer for
N-view images as ROver

N , we train our network to minimize a loss
function, L :

argmin
W

L (RFS(ROver
N (N (IFS)),z), IFS), (7)

whereW denotes N ’s network weights.
The objective L consists of a L1 loss for the learnable histogram

loss [57], L Hist, with 256 bins, the perceptual loss, L Percept, with the
backbone of VGG16 [29], and standard L1 loss, L L1 as

L = L Percept +λL L1 + γL Hist. (8)

We found such training is practically difficult on a GPU with limited
memory space. Therefore, we separate our training into two steps. First,
we train the network with a loss between a single ground-truth image,
Itgt, and its corresponding rendered image as

argmin
W

L (ROver(IMPI), Itgt)+L (ROver(I′MPI
), Itgt), (9)

where I′MPI represents an MPI whose colors are replaced with those of
the original focal stack input, IFS (equation 4), with λ = 0 and γ = 1.
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Fig. 3: Optimal Depth of Field in Synthetic Aperture for MPI Generation
and View Resampling: (a) Symbols representing the depth of field of
each focal stack slice. (b) The depth of field and disparities for a synthetic
focal stack slice. (c) View samples scattered from the ideal capture plane
in practice. (d) Resampled focal stack views.

Table 1: Reference for symbols used in Section 4. By camera, we refer
to either synthetic aperture camera, MPI camera, or physical camera for
those sharing the same intrinsic parameters.

Symbol Unit Definition
Wpx pixels Camera image width
θfov radian Camera FoV
A meter Synthetic aperture size
D none Number of layers
Cpx pixels Maximum circle of confusion
B meter Baseline between two MPIs
N none Number of MPIs
zi meter ith layer or focal distance
z−/+ meter Close/far depth of field (DoF) range
c−/+ meter Circle of confusion for z−/+

The latter term in equation 9 gives reasoning to distribute colors over
MPI layers. Without it, we observed that all colors appear only in
the farthest layer, as the objective may explain the perspective. After
the loss for a single view optimization in equation 9 converges, we
optimize our network for focal stacks as in eq. 7. For the focal stack
loss, we sum the loss of every layer with λ = 1 and γ = 0.

3.3 Rendering

We apply the local light field fusion approach [33] that renders the
multiple MPIs for a linear approximation of non-Lambertian scenes.
Namely, we take n-closest MPIs from a rendered view (n = 5 by de-
fault), render them in individual render buffer, and blend them into
one to compensate occluded views in each MPI. Refer to equation 8
in the literature [33] for the details. As we discuss in the next section,
our approach allows synthetic focal stack views, thus MPIs as well,
to be placed uniformly on a grid in the 2D proxy case because the
views are reassembled when forming the focal stacks. Therefore, by
the viewpoint resampling, smoother view transitions are expected [20].

4 THEORETICAL BOUNDS

Since our network has to encode color and soft depth values at indi-
vidual MPI layers from a focal stack, the focal stack should guarantee
that a point in space is observed without blurs, at least in one layer.
With this configuration, our network does not have to guess new colors
out of blurred images. To this end, we describe theoretical bounds for
the synthetic aperture size and intervals between MPI cameras from
given camera parameters and depth range. Once those parameters are
calculated and the user captures a set of registered images, synthetic
aperture cameras are located, and focal stacks are composited with a set
of registered images fully automatically. Consequently, such data cap-
turing requires filling in a specified 2D surface with registered images
using a tracked camera. Refer to Table 1 for symbols.

4.1 Largest Synthetic Aperture Size

Given D layers at zi (i ∈ {0,1, ...,D− 1}, zi > zi+1) focus distances,
DoF at zi of a synthetic aperture camera with aperture size, A, is
bounded by [z+i ,z

−
i ]. In a flat world without losing generality (Fig. 3),

all scene points fall within the DoF appear sharp, and therefore, DoFs
must overlap to cover the defined depth volume [zi,zD−1] (Fig. 3a) as

z+i+1 ≥ z−i . (10)

For zi, the furthest and closest points within the DoF appear c+i
and c−i on the image plane, respectively. Therefore, from the similar
triangles in Fig. 3b,

z−i =
Azi

A+ c−i
and z+i =

Azi

A− c+i
. (11)

Substituting equation 11 to equation 10 and reformulating the equation,
we obtain

A ≤
zic+i+1 + zi+1c−i

zi − zi+1
. (12)

This equation describes the upper bound of the aperture size. To
clarify the relationship between the equation and camera parameters for
practical usage, we express c− and c+ (no indexing for brevity) with
camera FoV, θfov, and camera image width in pixels, Wpx, as

c− = c+ =
2Cpx tan(θfov/2)

Wpx
, (13)

where Cpx is the maximum disparity in pixels, which is 1 for the highest
quality. Substituting equation 13 to equation 12, we obtain

A ≤
4Cpxzizi+1 tan(θfov/2)

Wpx(zi − zi+1)
. (14)

Since layers are linearly placed in inverse depth space, intervals
between two layers, ∆z−1, are calculated as

∆z−1 =
1

D−1

(
1

zD−1
− 1

z0

)
=

z0 − zD−1

(D−1)z0zD−1
⇔ zi − zi+1

zizi+1
. (15)

Therefore, substituting equation 15 to equation 14 results in

A ≤
4Cpx tan(θfov/2)

Wpx∆z−1 . (16)

Further, the camera view frustums must overlap at a point at z−D−1,
which gives the following additional constraint,

A ≤ 2zD−1tan(θfov/2). (17)

Overall, our synthetic aperture camera’s aperture size is bounded by
equations 16 and 17,

A ≤ min
(

4Cpx tan(θfov/2)
Wpx∆z−1 , 2zD−1tan(θfov/2)

)
. (18)

For a practical example, with D = 32, θ f ov = π/3, Wpx = 256, z0 = 9.0
m, and zD−1 = 1.0 m, the aperture upper bound A is 0.315 m.

Reassembling sets of multi-view inputs (Fig. 3c) bounded by the
aperture into focal stacks (Fig. 3d) is beneficial both for capturing and
rendering. The user only needs to take photos by roughly moving
the camera while recording a video in the tracked space [11], rather
than aligning the camera precisely to visual annotations [33]. For the
rendering, the system can position the focal stacks in a uniform way,
which results in smooth rendering results [20].
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4.2 Largest Baseline Between MPIs
While equation 18 guarantees the quality of an MPI, one MPI can
cover only a limited range. Therefore, multiple MPIs are necessary
to render a scene fully. In addition, baselines between MPIs should
satisfy the sampling theory to avoid aliasing on rendered images with
the minimum number of MPIs. As addressed in the literature [33], the
maximum baseline length, B, is bounded as

B ≤ min
(

2Cpx tan(θfov/2)
wpx∆z−1 , zD−1 tan(θ/2)

)
. (19)

As a note, the maximum B is equal to half of the maximum A in
equation 18 since focal stack imaging does not take occlusions into
account in the calculation [8].

5 EXPERIMENTAL EVALUATION

To validate the impact of local noises in input registered images, we
compare the MPI results of our approach and baselines, which do not
require per-scene training (e.g., NeRF [34]). As discussed in Sections
1 and 2, a focal stack is a subset of a light field [43]. Therefore, we are
interested more in consistency in rendering quality over a scene than per-
image absolute scores, especially when local noises exist in captured
registered images. We further discuss the required memory footprint,
number of input images, and data capture scheme in the context of MPI
generation from registered images from a tracked phone.

5.1 Approaches under Comparison
We prepared two baseline approaches, LLFF [33] and IBRNet [56], with
pre-trained weights provided by the authors and compared them with
our approach. Upon discussing the network structures, we also compare
their memory consumption. However, since all three methods use
different frameworks that rely on specific hardware, a fair comparison
is difficult on a machine. Therefore, we compare the amount of input
data. Table 2 shows the dependent variables and Fig. 4 shows memory
consumption on inference with W = 640, H = 480, and D = 32.

LLFF. LLFF generates MPIs from the five nearest registered multi-
view images and renders the sparsely sampled multi-MPI with alpha
blending. Each MPI is, therefore, generated at each camera location.
The number of input images is fixed to five of a reference, top, bottom,
left, and right views positioned with the support of the capture guideline.
In other words, the user must take photos on a navigation grid that
indicates ideal sampling intervals. If one may want to use the LLFF
network with more than five views to lower the impact of local errors
in MPI inference, required memory significantly increases with larger
N. The training, therefore, becomes infeasible. The main cause is
PSV, which expands one image to D images to keep the raw light field
information.

IBRNet. The network learns the view interpolation function to esti-
mate radiance and volume density and then renders a novel view using
volume rendering. The network structure can accept multiple views
as much as GPU memory limits permit. However, the rendering per-
formance is limited due to the rendering scheme without a lightweight
medium such as MPI. Note that IBRNet, therefore, relies only on N.
However, no discussion on the appropriate N or spacing in capturing is
provided in the literature [56].

Ours. Our pipeline allows to the composition of all input images
within the A×A aperture area into a focal stack. In other words, our
network infers MPI from a focal stack. As such, our network does not
rely on N. In addition, since the focal stacks are generated at arbitrary
virtual viewpoints, the spacing between each focal stack or MPI can be
kept exactly at the interval B guaranteed by the sampling theorems.

5.2 Dataset
For training our network and quantitative comparisons, we generated a
synthetic dataset in a similar manner to that of the literature [58]. We
rely on the synthetic dataset to insert controlled local noises. Namely,
we trained our network without any noises and evaluated the influences
by inserting noises to test data instead of adding noises in the training

Table 2: Tensor size per inference.

Alg. Input image size
LLFF W ×H ×C×N ×D
IBRNet W ×H ×C×N
Ours W ×H ×C×D

Fig. 4: Data amount per inference.

Fig. 5: Local noises added to our test dataset. The bluish gradations
show the noise level. We added positional noise, ISO- noise, and motion
blur to (a) one, (b) two, and (c) four locations. The red, green, and blue
rectangles in (a) correspond to the rendering locations in Fig. 7.

Fig. 6: PSNR, SSIM, and LPIPS quality measures over different numbers
of source views for our network trained with 11×11 views. The improve-
ments saturate between 16×16 and 17×17 views (the blue band), which
approximates the plenoptic sampling theory well.

step (cf., data augmentation). Due to the defocus nature, we expect a
smaller impact on virtual–real domain shift [32].

We created 120 synthetic scenes in total using an open source soft-
ware, Blender [9]. The dataset is separated into 80, 20, and 20 scenes
for training, validation, and testing, respectively. For training and vali-
dation scenes, 121 virtual cameras in an 11×11 grid are placed. The
side length of the grid is set to the same as the maximum aperture size,
A, calculated in equation 18. For the test dataset, we set up 441 cameras
of 21×21 images with the same camera baselines as the other datasets.
Individual methods were evaluated by comparing the center 11× 11
ground-truth images with images rendered at the same locations to
avoid missing border cameras (See Fig. 5a).

3D objects from Thingi10K [59] were randomly generated from 1.0
to 10.0 meters away from the camera array plane. A textured quad was
placed at 10.0 meters to cover the FoV completely. The objects had
either a uniform color or a textured pattern whose color distribution
follows that of CIFER-10 [24]. The camera resolution is fixed to
256×256 pixels, and the horizontal and vertical FoV was 56.2475◦.

5.3 Training Details

We implemented our network with the PyTorch framework [41] v1.11.0.
We used the computational resource of AI Bridging Cloud Infrastruc-
ture (ABCI) provided by the National Institute of Advanced Industrial
Science and Technology (AIST) to train our network. We used the
RMSprop optimizer to train the network (learning rate: 1−2 → 1−3

(eq. 9 → eq. 7), weight decay: 1−8, momentum: 0.9, and batch size:
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Fig. 7: Qualitative comparison of rendered images under (left) motion blur and positional noise and (right) ISO noise and positional noise. The
red, green, and blur frames of the enlarged figures indicate the rendering positions depicted in Fig. 5a. While our approach keeps the quality over
different locations, the contenders show degraded results where the noise appears close (red and green frames).

4→ 1). All tests were executed on a computer with an Intel(R) Xeon(R)
W-3235 CPU and an NVIDIA Titan RTX GPU (24GB). Due to the
GPU memory limit, we fixed the number of depth layers to D = 32.

5.4 Number of Input Views
Although our framework can accept an arbitrary number of source
views, there should be quality upper and lower bounds depending on
the number of views.

Fig. 6 shows the relationship between the rendering quality and the
number of source views given to our network trained with 11× 11
views. For tests with denser input views, we created another dataset,
which contains 1681(= 41×41) images within the 2A×2A range, and
we evaluated by rendering images to the same locations of the center
21× 21 ground-truth images, as in the same manner as explained in
Section 5.2. For each sample of input view numbers, we randomly
selected the required number of views from the available 441 images,
generated focal stacks, fed them to our network, and evaluated the
rendering quality in three different quality metrics: Peak signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM), and
learned perceptual image patch similarity (LPIPS) of L Percept. We
calculated average values over 21×21 test images of 20 test scenes.

The rendering quality reaches its peak between at 16×16 (= 256)
and 17× 17 (= 289) views. Given the optimal aperture size in our
dataset, the baseline between two cameras is 9.59 mm and 8.99 mm
for 16× 16 and 17× 17 views, respectively, while, according to the
plenoptic sampling theory, the minimum baseline is 9.28 mm that lies
between the above-mentioned values. We, therefore, conclude that our
network is well-generalized with the training data. Nonetheless, in
the following results, we fix the number of input views to 121 for a
good compromise between storage and quality from sparser inputs in
practical use cases. Based on the results in Fig. 6, when the [0, 100]%
range corresponds to the quality range of [5, 289] views, 11×11 views
would lead to 95% quality or higher.

5.5 Robustness Against Local Noise in MPI Generation
Purpose. As outlined in Sections 1 and 2, a focal stack can be

considered an approximation of a light field. Consequently, given an
ideal setup that satisfies sampling theory, our network cannot achieve
better MPI reconstruction than LLFF, which employs raw light fields.
In this context, we aim to highlight the benefits of using focal stacks
generated from registered multi-view images, with a particular focus
on enhancing robustness against local noise present in the source views.
Such noise can be mitigated through the formation of a focal stack.
To this end, we compare our approach with two alternative methods,
assessing the gradients of rendering quality during camera movement
along a specified path depicted in Fig. 5a. Specifically, we calculate the

absolute differences between quality values (PSNR/SSIM/LPIPS) of
two consecutive rendered frames, which should remain continuously
small to ensure robustness against local noise. The quantitative results
are presented in Table 3 under the Grad. column.

Local noise modeling. We add three types of noises to the test
dataset that may appear during photography: ISO noise, motion blur,
and positional noises. We used the Albumentations library [7], which
receives [0,1] values as intensities to add ISO noises and motion blurs
to images. The noise intensities and positional errors follow absolute
values of a Gaussian distribution (µ = 0.0, σ = 1.0) truncated between
[0,1]. We scaled the [0,1] value to [0,0.3] and [0,25] for ISO noises and
motion blurs, respectively, to keep the image plausible. For positional
errors, we scaled the [0,1] value to [0,0.2] and used the value as a radial
distance in a spherical coordinate system centered at the ideal camera
location. We then applied uniform random values for the polar angles
and added the resultant values to the ideal camera location. We added
such noises at different locations as depicted in Fig. 5.

Source view selection. Our network inference takes all views
within the calculated aperture, A, while LLFF network inference takes
the five closest views at B intervals to generate an MPI (Fig. 5). We
rendered the closest MPI at a time to evaluate per-MPI quality and
coherency when switching MPIs for our approach and LLFF. IBRNet
rendering used the closest five views.

Results. Fig. 7 presents qualitative comparisons under motion
blur and positional noise (left) and ISO noise and positional noise
(right). Our approach successfully maintains the rendering quality over
different locations regardless of how far the noise is located. On the
other hand, the contenders show deteriorated results, such as blurry
appearance and destructed structures, when the noise appears close.

Fig. 8 shows quality transitions along the path of Fig. 5a under (a)
motion blur and positional noises and (b) ISO noises and positional
noises. Table 3 summarizes the quantitative evaluation in gradients
and also, for a reference, mean and standard deviation values in each
quality metric under different numbers of noises in Fig. 5. Since we
observe that typical MPI rendering results are presented after cropping
the borders to remove artifacts due to missing warped MPI pixels. To
investigate the effects of such cropping, we removed 16 pixels on each
side of the rendered image and evaluated the rendering quality (Table 3,
with cropping). The results show that cropping particularly performs
well for approaches that use MPIs but have less impact on IBRNet.

We find that the gradients of our approach stay low while our con-
tenders suffer from noise, resulting in varying metric scores depending
on the rendered locations. IBRNet seems sensitive to the noise and its
gradients fluctuate. In other words, only very accurate images can lead
to promising rendering results in IBRNet. We note that the best scores
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Table 3: Quantitative evaluation in mean gradients, Grad. (↓), under a predetermined path in Fig. 5a in PSNR, SSIM, and LPIPS. Mean, and
standard deviation values are for reference. The table on the left shows the evaluation of the rendered images without cropping their edge, while the
table on the right shows the results by cropping the perimeter by 16 pixels as in typical MPI rendering. The highest scores in gradients under each
noise condition are highlighted in bold fonts.

without cropping with cropping
# of PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Method noises Mean (Std.) Grad. Mean (Std.) Grad. Mean (Std.) Grad. Mean (Std.) Grad. Mean (Std.) Grad. Mean (Std.) Grad.
0 25.87 (2.27) 1.53 0.93 (0.023) 0.014 1.56 (0.29) 0.19 28.24 (1.99) 1.11 0.94 (0.020) 0.011 1.53 (0.26) 0.16
1 24.56 (2.60) 1.46 0.90 (0.054) 0.024 1.87 (0.51) 0.25 26.69 (2.50) 1.20 0.91 (0.049) 0.020 1.81 (0.45) 0.22
2 24.71 (2.34) 1.55 0.90 (0.049) 0.024 1.84 (0.46) 0.26 26.87 (2.26) 1.24 0.91 (0.044) 0.021 1.78 (0.41) 0.22

LLFF

4 23.07 (2.17) 1.17 0.86 (0.064) 0.029 2.23 (0.52) 0.26 24.80 (2.28) 1.00 0.87 (0.059) 0.026 2.16 (0.47) 0.21
0 29.99 (4.77) 2.58 0.95 (0.022) 0.011 1.29 (0.38) 0.21 30.56 (5.02) 2.71 0.95 (0.021) 0.011 1.40 (0.42) 0.23
1 26.23 (5.48) 2.68 0.87 (0.088) 0.035 1.95 (0.80) 0.37 26.67 (5.74) 2.79 0.87 (0.088) 0.035 2.02 (0.79) 0.37
2 26.79 (5.09) 1.55 0.89 (0.090) 0.024 1.82 (0.78) 0.26 27.23 (5.36) 2.90 0.89 (0.091) 0.037 1.91 (0.77) 0.39

IBRNet

4 23.76 (4.08) 1.91 0.82 (0.105) 0.047 2.38 (0.80) 0.38 24.09 (4.27) 1.99 0.83 (0.11) 0.047 2.43 (0.79) 0.38
0 23.48 (1.56) 1.11 0.90 (0.025) 0.014 1.93 (0.24) 0.17 26.02 (1.37) 0.68 0.91 (0.025) 0.013 1.93 (0.21) 0.13
1 23.14 (1.42) 0.89 0.90 (0.026) 0.009 1.99 (0.24) 0.13 25.76 (1.35) 0.41 0.90 (0.026) 0.008 1.98 (0.21) 0.08
2 23.16 (1.40) 0.90 0.89 (0.025) 0.010 1.98 (0.23) 0.13 25.81 (1.33) 0.42 0.90 (0.026) 0.008 1.97 (0.21) 0.09Ours

4 23.07 (1.35) 0.86 0.89 (0.025) 0.009 2.00 (0.23) 0.12 25.64 (1.30) 0.38 0.90 (0.025) 0.007 1.99 (0.21) 0.08

Fig. 8: View consistency evaluation in two different types of local noises
without image border cropping. (a) Motion blur and positional noise and
(b) ISO noise and positional noise. The numbers and red arrows corre-
spond to those in Fig. 5a. See Grad. in Table 3 for better illustrations of
quality transitions over time.

of IBRNet in Table 3 are when no noise is given. The LLFF network,
by architecture, finds agreements of five view inputs. Therefore, the
impact of an erratic image seems lower. Given four noise spots, our
approach presents close-to-equivalent quality even in absolute measure.
The artifacts in motion are better seen in the supplemental video.

5.6 Demonstrating View Synthesis Pipeline
Purpose. We demonstrate our entire view synthesis pipeline (Sec-

tion 3). We take real-scene photos with a tracked phone to infer and
render resultant MPIs. Apart from per-MPI evaluations in the synthetic
dataset (Section 5.5), we render the nearest four multiple MPIs at a
frame (Section 3.3) in a 3×3 grid. We present rendered results of our
approach and the contenders for qualitative comparisons.

AR capture app. We implemented our capture application running
on an Android Phone (Google Pixel 2XL, Android 11) to capture regis-
tered images using Unity1 2020.3.23f1 with ARFoundation2 4.1.12 for
tracking (Fig. 9a). 121 registered images were automatically recorded
locally on the phone at five fps after determining the scene- and camera-
dependent synthetic aperture size (equation 18). Although our network
is trained for a 1 to 10 m range, the range is adjustable with different

1https://unity.com/
2https://unity.com/unity/features/arfoundation

Fig. 9: AR capture app implementation. (a) A 3D flat cube visualizes the
valid range for photographing. The placement and size are determined
based on the camera configuration and scene distances. (b) Upon
imaging, a 3D axis is placed to show the recorded pose and the current
coverage. (c) In case the camera is out of the valid range, the cube
turns red from blue. (d) For LLFF visualization, we placed 3D axes to be
aligned with that registered to the camera frame of reference.

aperture sizes depending on the scenes. The application visualizes 3D
axes to represent recorded registered images and the current pose at
the center of the camera FoV. When the first image is recorded, the
application registers a semitransparent AR cube registered at the photo
pose (Fig. 9a). The cube size indicates the valid capture range, and
therefore, width and height correspond to A, and thickness is 0.05 m
by default. To avoid diverse changes in depth, the application recorded
images only when the pose was within the range. To navigate the
photographer to the valid range, the AR cube is colored in blue or red
when the phone is within or out of the range, respectively (Fig. 9b,
c). The rendered occlusion between the center 3D axis and the cube
visualizes if the current pose is behind or in front of the valid range.

MPI generation and rendering. We took photos at the native res-
olution, 1440×2880 pixels, resized them to 256×512 pixels, applied
our network to the left- and right-half of an image individually, and
then merged two MPIs into one MPI at the original aspect ratio. MPIs
are generated in the exact 3× 3 grid (recall Fig. 3c, d). We selected
and rendered the four nearest MPIs at a view and blended the rendered
frames to fill in disoccluded areas at each view [33].

Rendering results. We recorded four real scenes. For comparison,
we present the results of LLFF and IBRNet in the same scene. To use
the same real scene dataset, we generated MPIs using the nearest five
views for LLFF, which was oversampled. For IBRNet, we used the
nearest 10 views to render a frame. Fig. 10 summarizes the rendering
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Fig. 10: Example real-scene rendering in four indoor and outdoor real scenes.

results. Although our results show slightly blurred images compared to
LLFF, they miss fewer pixels at the image borders owing to the MPIs at
exact 3×3 locations. LLFF requires carefully positioned posed images,
which could lead to recording efforts for the user (see the discussions
in the next section). IBRNet suffers the real cases seemingly due to the
limited camera pose accuracy.

5.7 Interactive LF Capturing / User Study

We designed a repeated measures within-subjects study to compare
two different AR capture guidance: LLFF [33] and ours. The task for
the LLFF guidance was to align 3D axis in a 3× 3 grid (Fig. 9d). A
registered photograph was saved when the screen-referenced 3D axis
collided with the one in the grid. For our visual guidance, we used the
same implementation described in Section 5.6. Since the visualization
scales depending on the scene scale, we prepared two differently scaled
scenes, desktop and room scale, each ranging approximately from 0.1
to 0.5 m and 1.0 to 10.0 m in depth, respectively.

We collected 20 participants (eight females and 12 males, age X̄ =
26.6, SD = 11.8 years old, self-rated experience in AR was X̄ = 2.35,
SD = 1.3 in [1,5]). After receiving textual instructions and signing an
informed consent form, participants performed tasks with randomly
selected methods and in randomly selected scene-scales until they
covered all combinations. Every after a trial, the participants were
asked to score the method in raw NASA Task Load Index (NASA-
TLX) [16]. Eventually, we collected 80 (= 2×2×20) ratings.

After performing Shapiro-Wilk and outlier tests, we performed two-
way repeated measures analysis of variance (ANOVA) for the inde-
pendent variable, “raw-TLX score,” within two factors, “method” and
“scene-scale.” Namely, we assumed that (H1) our visual guidance is
superior in task load due to less restrictive 3D alignments and (H2)
scene-scale has an impact in task load due to the scale changes in visual-
ization. The analysis revealed significant differences between methods
(F(1,19) = 15.65, p < 0.001, η2 = 0.076) and also between scene-
scales (F(1,19) = 4.99, p < 0.05, η2 = 0.019). The mean difference
between methods is 8.73 (ours: 44.10 < LLFF: 52.83) and that of
scene-scales is 4.19 (desktop: 50.56 > room: 46.38). Therefore, both
H1 and H2 are supported. We found no interaction between the two
factors (F(1,19) = 0.40, p = 0.54, , η2 = 0.002). Overall, our visual
guidance requires a lower task load than that of LLFF, and room-scale
data capture requires a lower task load than on the desktop scale.

6 APPLICATIONS

We discuss three applications enabled by the proposed framework.

Denoised MPI. By drawing an analogy to prolonged exposure
in photography, we generate a clean MPI using registered multi-view
images of a dark room scene captured by a tracked smartphone, Google
Pixel 2XL. Fig. 11a illustrates one of the input images with visible ISO
noise, the composed focal stack that acts as a denoiser, and the resulting
MPI rendering.
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Fig. 11: Three applications of multi-layer scene representation from composed and optical focal stacks. (a) Generating denoised MPI from
photographs of a dark room scene. (b) MPI from an optically photographed focal stack with a DSLR camera (Nikon Z6, f/1.8, 35mm). (c) Wide FoV
rendering using four MPIs facing different angles inside-out.

Lens focal stack to MPI. Our user study results suggest that
AR-supported light field photography appears mentally demanding in
small-scale scenes. To solve this issue, we can photograph a focal
stack using a stationary lens camera without moving the camera (e.g., a
motorized lens in a typical DSLR, a focus tunable lens [12], or actuated
image sensor [25]). Our network should be able to accept focal stack
images from any of those imaging systems. To this end, we took a focal
stack with a DSLR (Nikon Z6, f/1.8, 35mm) in a miniature scene and
generated an MPI. Fig. 11b shows the results. Although the viewing
range is limited to the lens aperture, we observe scene disparities.

Wide field of view imaging and rendering. Due to the limited
camera resolution and physical limitations in optics, photographing a
focal stack using a wide FoV camera is difficult. However, a combina-
tion of multiple MPIs can form a wide FoV multi-layer scene, which is
suitable for immersive VR viewing. We show the simplest implementa-
tion by projecting four MPIs facing towards different directions from
a center (Fig. 11c). While each focal stack capture proxy is restricted
to a plane, integrating multiple MPIs into MSI [5] or layered depth
data [28] further improves the quality.

7 LIMITATIONS AND FUTURE DIRECTIONS

This paper introduced a framework to generate MPIs from synthetic
focal stacks successfully. Here, we discuss several known limitations
that the current implementation struggles with.

Approximations in MPI. A focal stack is an approximation of a
light field [43]. In our case, all input views are merged into defocus
images at different focus distances, and therefore, the original view-
dependent nature is lost in averaged values. To maintain the original
information better, one may want to preserve differences or distributions
additionally as statistically meaningful values, which have been used in
the multi-view stereo approaches [47]. Nonetheless, different network
training strategies like generative adversarial network (GAN) or an
intermediate NeRF representation [27] would improve the generated
MPI quality. NeRF from a focal stack is also an interesting direction.

We guarantee occlusions within an MPI only through the loss design
in training. Aiming at focal stack imaging as a good approximation of
more images than the conventional “five input views,” we trained our
network so that it reproduces a focal stack from an MPI. In other words,
we do not evaluate generated MPIs with the original multi-view inputs.
As another aspect, limited GPU memory prevented us from evaluating
differentiable renderings against many ground truth images.

A single MPI assumes that specularity appears at a single depth and
thus the rendering is narrow-ranged. Apart from single MPI rendering,

multi-view MPIs rendering and blending is a practical linear approxi-
mation of original light fields [33] as we implemented (Section 3.3).

Network and dataset design. We used a basic U-Net, while,
naturally, testing our framework with different network architectures
is an interesting future venue. Investigating minor changes in skip
connections, network depths, and convolutions [30] would be beneficial
for higher quality and speed. 3D CNN gives control of the number of
resultant layers, D [33]. Some attempts with residual networks suggest
that a few focal stack slices can generate a light field [17], which
may apply to MPI generation. Generative networks are potentially
advantageous in MPI generation and denoising.

We observed blurry MPI layers, especially at frontal objects (See the
blurry tree and goat on the right in MPI rendering results in Fig. 11b).
We also found similar cases in our test dataset results. When generating
our training dataset, we guaranteed that the randomly generated objects
were located within the valid depth of field range by clipping off objects
to avoid including extreme cases. However, which may have led to
a lack of examples of frontal objects in our training data. Overall,
effective object distribution in a test dataset remains future work.

Efficient data recording. Since our approach requires recording
hundreds of registered images in practice, efficient data recording
clearly contributes to usability and efficiency. Efficient light field
capturing is a unique set of challenges but an attractive research area
[2, 3, 11, 35]. A tracked all-in-focus camera (e.g., a smartphone with a
tiny camera and support of AR functionality) enables sophisticated AR
visualization [11, 35] and AR navigation [3] for improved efficiency.

8 CONCLUSION

This paper proposes a novel imaging-to-rendering framework for view
synthesis. Compositing a focal stack from multi-view calibrated images
is the key to multi-layer scene (aka. MPI) generation. We use a
focal stack composed of input views to incorporate more images from
diverse viewpoints and feed it to our U-Net-based network to generate
an MPI with suppressed noise. Unlike conventional MPI generation
methods that use PSV at each input view, focal stack imaging requires
smaller data volume and accepts different imaging devices (i.e., tracked
smartphones for all-in-focus multi-viewpoint images and lens cameras
for lens focal sweeping). Our results demonstrate coherent rendering
over the captured scene and fewer mental loads in our capture mode.
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