
Error Management for Augmented Reality Assembly Instructions
Ana Stanescu 1* Peter Mohr 1 Franz Thaler 1,2 Mateusz Kozinski 1 Lucchas Ribeiro Skreinig 1

Dieter Schmalstieg 1,4 Denis Kalkofen 1,3 †

1 Graz University of Technology 2 Medical University of Graz 3 Flinders University 4 University of Stuttgart

Figure 1: When a user makes an error while following an AR tutorial (a), our system is able to recognize the error state. (b) The
state detector receives a video stream from the HMD and communicates the results back over a wireless network. (c) Once the
error has been detected, the system guides the user back on the correct path in the assembly graph.

ABSTRACT

Augmented reality (AR) lends itself to presenting visual instruc-
tions on how to assemble or disassemble an object. Splitting the as-
sembly procedure into shorter steps and presenting the correspond-
ing instructions in AR supports their comprehension. However, one
can still misinterpret instructions and make errors while manipulat-
ing the object. While previous work supports detecting the occur-
rence of errors, we investigate handling such errors. This requires
knowledge of the error at runtime of the application. Starting from
a categorization of the errors, we investigate how to automatically
derive common error states to generate training data. We intro-
duce an extension to a state-of-the-art deep-learning-based object
detector for supporting the detection of assembly states at real-time
update rates, based on contrastive learning. We evaluated the pro-
posed detector, showing that it outperforms the state-of-the-art, and
we demonstrate our work with an AR application that alerts the user
if errors occur and provides visual help to correct the error.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Mixed / augmented real-
ity;

1 INTRODUCTION

Augmented Reality (AR) instructions provide visualizations to
communicate the actions required to assemble or disassemble an

*e-mail: stanescu@tugraz.at
†e-mail: kalkofen@tugraz.at

object [39, chapter 7]. An assembly procedure is commonly split
into several steps such that each step is simple to comprehend. Only
one single step is presented at a time as a static or animated glyph.
Showing instructions in AR [37], that is, directly within the user’s
field of view, can reduce the mental effort required to follow instruc-
tions [34, 16, 31]. Yet, even with AR, a certain probability remains
that the user misinterprets the instructions and, as a consequence,
introduces errors in the assembly.

Such errors can occur in various forms; for example, instructions
are more likely to be misinterpreted when an object has many simi-
lar parts. Users may skip a step, confuse the order of steps, confuse
object parts, place existing parts in wrong positions or poses, omit
parts altogether, or repeat an action too often [36].

While some errors can be spotted immediately, many errors be-
come evident only at the end of an assembly procedure, for exam-
ple, when the final assembly does not match the intended outcome.
Progress observation and discrepancy detection have been proposed
to prevent erroneous assemblies. Progress observation validates ev-
ery new assembly state [57, 50, 42]. Discrepancy checking addi-
tionally highlights the area of an assembly that differs from the ex-
pected object configuration [43, 55].

With progress observation and discrepancy checking, an AR ap-
plication can notify the user of an erroneous assembly configura-
tion. However, all these methods can only detect that a state is
invalid, but not why it is invalid. Without precise information on
the type of error, the feedback cannot include the means to correct
the error. Consequently, error management is commonly restricted
to either restarting the assembly procedure or waiting in error mode
until a correct state is recognized. A method that provides instruc-
tions on how to backtrack and repair the error would be preferred.

Explicit error detection for AR has significant benefits, but its



implementation is challenging. Errors need to reliably be detected
in real-time, among a multitude of very similar correct and er-
roneous configurations, and under real-world conditions, such as
varying lighting and partial occlusion. Enumerating the errors
manually does not scale beyond trivial examples, so an automatic
method is required to model the errors.

Since modeling all possible errors can become excessive, we fo-
cus on the most common ones. We start from an assembly graph
expressing the sequence of valid states and extend it with additional
states representing errors. We introduce a procedural error model
that enumerates all common errors for a given assembly state and
error category. This can easily be extended with additional error
types. For assembly state detection at runtime, we build on an ob-
ject detector specialized for assemblies, StateYOLO [42]. In our
work, we introduce a novel approach based on contrastive learning
for synthetic or mixed datasets, which improves the separation of
features extracted from different states in our training data.

The extended assembly graph is essential for generating the
training database for our new object detector. Obtaining training
images for large assemblies that include all kinds of errors would
be extremely tedious. Therefore, we generate synthetic images for
training and mix them with real images.

In summary, we introduces the following contribution:

• A method for assembly graph augmentation to provide train-
ing examples for common user errors without the need to
manually model them.

• A novel assembly state detector, which is based on contrastive
learning from synthetic or mixed datasets and which has been
integrated in YOLOv9, a current state-of-the-art real-time ob-
ject detector.

• A new synthetic dataset that includes images of erroneous
assembly states, with an accompanying test set consisting
of captured real images, and a extension to the IndustReal
dataset containing synthetic assembly error states.

• A proof of concept application for error detection for illustrat-
ing the real-time capabilities of our system running in AR.

2 RELATED WORK

Our work relates to AR assembly instructions with an automatic
progression of steps based on user observation and error detection.
Therefore, we review work on state and error detection and discuss
literature investigating types of error as well as data structures to
model the assembly procedure.

2.1 State detection
Several approaches for detecting the object’s state have been inves-
tigated in the context of a real-time AR application. Wu et al. [57]
propose an approach based on markerless tracking, while Wang et
al. [50] track parts of an object based on template matching to check
the completeness of the state. GBOT [28] approaches state detec-
tion by tracking each individual part of the object. Deriving de-
tection from pose tracking has the advantage of knowing the pose
of every component and their relation to each other, therefore, be-
ing able to detect wrongly mounted parts. However, in the case
of small parts with heavy occlusions, tracking-based methods face
challenges from lost objects. Thus, such methods are often limited
to a low number of object parts and states.

Yamaguchi et al. [58] overcome the issue of tracking small parts.
Their system incorporates the assembly sequence, which allows for
identifying the removal of small parts by detecting the removal of
larger tracked parts that are blocked. Although this approach re-
duces the limitations of object tracking-based configuration detec-
tors, it requires a model that can be used for tracking at runtime and
suffers from the challenges of template-based tracking.

Image-based detectors have been developed to learn detection
from a set of images. For example, deep-learning-based approaches
have been investigated to detect the states of an assembly di-
rectly from images showing the different configurations of an ob-
ject [30, 42], or by first extracting regions of interest of the ob-
ject to subsequently re-identify and classify their states [59]. Since
AR devices are commonly equipped with one or more cameras, an
image-based approach can be easily integrated into existing appli-
cations. However, none of the previous approaches for deep learn-
ing of assembly configurations has investigated error modeling and
error detection so far.

2.2 Error management
Related engineering literature considers human-made errors using
quantitative methods for assessing errors such as THERP, HEART
or JHEDI [25]. While our focus is not on developing such guide-
lines, we make use of some considerations from the field to generate
common errors. These types of error can be categorized similarly
to the work of Riedel et al. [36] or the VDI guidelines [49], since
their categories are extracted from observed human errors in man-
ual assembly tasks, which is exactly what we want to investigate.

Riedel et al. [36] classify the types of errors that users make in
manual assembly: errors by omission, execution errors, errors by
confusion, and execution errors. They show that detecting the parts
that are mounted and guiding the user with video instructions and
LED beacons mounted at the parts’ locations can decrease errors.

2.3 Error detection
Khuong et al. [22] study the effectiveness of AR instruction sys-
tems. They use an error detection measure by computing occupied
voxels in a Lego assembly. The results indicate that having an error
detection system can reduce the number of user errors during as-
sembly. Furthermore, the use of wireframe overlays shows promis-
ing results [23]. Wasenmuller et al. [55] introduce a method that
can highlight discrepancies using color. Their approach heavily re-
lies on dense 3D data, accurate 3D registration, and precise tracking
at runtime, which is demanding in terms of sensor performance and
computational load. We largely avoid these costs by considering the
problem at a more abstract level of states without needing precise
alignment of all parts, thus avoiding the need for 3D reconstruction.

The work of Gupta et al. [14] handles Duplo pieces in a step-by-
step assembly by checking their geometry. The system can detect
errors by checking the occupancy in a voxelized space populated
by parts of fixed voxel sizes. Similarly, the approach introduced
by Stanescu et al. [43] performs error checking by comparing the
point clouds of extracted part models. The approaches of Gupta et
al. and Stanescu et al. are suitable for detecting state differences
caused by more significant parts, but not where only subtle differ-
ences occur, such as the presence of a fold or the installation of a
screw. Also, both approaches rely a 3D scene representation, which
requires either a carefully prepared 3D model or stable and accurate
3D reconstruction in real time, which may not be easily available.

Argus [6] is an AR assistant toolkit that unified a series of ma-
chine learning tools, including the detection of objects and actions
to perform error correction. This is proposed by detecting broad
object categories learned by large vision models, for example, in
a cooking scenario. We focus on more subtle errors in the con-
text of assembly and their detection. Another machine learning ap-
proach [29] uses a variant of YOLOv3 to detect regions on a plate
and compare the regions with known templates. The success is de-
termined by the confidence of the prediction of the correct state,
combined with the overlap of the bounding boxes in 2D space. If
these are below a threshold, the labels are incorrect. For this ap-
proach to work, capture coverage needs to be ensured so that incor-
rect states are not labeled. In addition, very recent work deals with
detecting wrong steps in a sequence [32] by using vision transform-



Figure 2: Example of types of errors that can occur during mounting: (a) correct state, (b) mounting screw at the wrong nearby position, (c)
omission of the pink hinge, (d) mounting pink hinge in a 180° rotation, (e) mounting an incorrect (but visually similar to the pink hinge) part,
(f) mounting the pink hinge in a flipped pose.

ers. This category of approaches focuses on tasks over time with
more broadly defined steps, such as cooking or a medical proce-
dure. This slightly differs from our goal, which is aimed at mainte-
nance and training with small object differences.

Ghoddoosian et al. [12] deals with error detection in procedural
videos, with a focus on anomaly detection, where anomalous ac-
tions are defined as skipping a step, wrongly repeating a step, and
performing a wrong order of known steps. Their error detection
method is based on a variant of the Viterbi algorithm, which can
tell if the current step is likely anomalous or not.

In contrast to existing approaches, we identify the object states
in a potentially complex assembly graph. Knowing how far the user
has traversed can provide clues on the part that has wrongly been
added to plan a recovery strategy. Out-of-distribution detection,
in general, cannot identify what is wrong, only that a procedure
deviates to a certain extent from a fixed linear procedure.

2.4 Assembly graphs
The literature provides several approaches to modeling an object’s
assembly. These approaches come from different research fields,
such as multiple sub-domains of computer science, industrial engi-
neering, and mechanical engineering. Similarly to previous work
on assembly management in AR [42, 20, 35, 19], we choose to de-
velop our approach based on assembly graphs. An assembly graph
(sometimes also called state graph) is a directed graph that makes
all possible (or permissible) actions explicit. It can be used directly
as a state machine, where a single active node fully represents the
current state of the assembly. Since a state-based approach aptly
supports state detection, we make use of an assembly graph. In con-
trast to existing work, we extend assembly graphs with knowledge
about possible error states because they directly provide classes to
detect within their nodes. Also, given a start node, the currently
active node in an assembly graph partially encodes the assembly
history as the set of possible paths from the start node to the active
node. This information is helpful in determining possible correct or
incorrect actions that the user may take in the current state. More
details on graphs introduced for the disassembly planning of objects
can be found in the surveys of Zhou et al. [61] and Guo et al. [13].

2.5 Datasets of assembly procedures
The Epic Tent [17] dataset focuses on tent assembly and captures
data from a first-person perspective, labeling video frames accord-
ing to stages in the assembly of the tent, along with gaze data and
user expertise data. The authors include nine error categories that
were observed by 24 users. These cover motor errors, equipment
misuse, out-of-order steps, equipment failure, omission of a step,
searching for an item, correction of a prior error, slow movement,
and repetition. The categories we focus on partially overlap with
these. However, we focus on the error types that were empirically
deduced by observing users in industrial assembly settings.

Assembly101 [41] is a recent dataset that captures humans as-
sembling and disassembling toys. It includes mistakes made in the
assembly as labels of coarse actions over time. The labels are cor-
rect, correcting, and incorrect. The approach of Ding et al. [9]
follows up with the Assembly101 dataset, focusing on detecting

errors. They investigate the problem as an action detection task
and focus on step-order errors. Another recent dataset, HoloAssist,
looks at first-person videos captured on a Microsoft Hololens and
also includes errors [53]. The mentioned datasets do not contain
object state labels, but instead focus on video procedures.

The IndustReal dataset [40] provides the assembly procedures
of a 3D printable toy car model, including errors of different types,
but all labeled with the same class. The authors propose several
metrics for which the dataset can be used as a benchmark, including
state detection and procedure step recognition. Leonardi et al. [26]
generate synthetic datasets not of errors but of common object-hand
interactions in industrial contexts as synthetic data. In contrast to
their work, we want to generate common errors that could be made
during object assembly of objects.

In addition to datasets that have been collected from physical
observations, the generation of synthetic datasets is equally impor-
tant [38], as frequently discussed in the literature [28, 30, 38]. Tools
such as Nvidia’s Onmiverse Replicator [33], BlenderProc [11] or
Unity Perception [47] have been designed to generate large syn-
thetic datasets (see Figure 3(b) for our generated example images).

3 ERROR MODEL

In this work, we use assembly graphs, where each node represents
an assembly configuration, and each edge represents the addition or
removal of a part. The types of errors that a user can make while
following an assembly procedure may fall into three categories:

1. Invalid transition to a valid state. An unexpected transition
occurs to a valid state. For example, the user may mount two
parts at once and, therefore, skips one state, or the user may
go back in the assembly graph instead of progressing.

2. Known error state. A known error state is reached. This
situation can be modeled if, for example, all common errors
are modeled as states.

3. Unknown error state. This state is entered if an unknown
invalid configuration is encountered.

We focus on managing errors of the second type, which are expli-
cable given the assembly graph. In particular, we extend the graph
of valid states with additional error-state nodes corresponding to
invalid object configurations. While the causes for these types of
errors are varied (see Table 1 for an overview), the actual errors
can be combined into only two outcomes: Either an incorrect part
is added, or a correct part is added in a wrong pose (translation
and rotation). The condensation into just two outcomes makes it
feasible to develop a procedural generator that can systematically
enumerate common error states. We use the generator to extend the
assembly graph with the most important erroneous states (see Fig-
ure 2). From these states, we synthesize images and annotations to
train an object detector [51, 42]. We describe the procedural gener-
ator for creating these error states in more detail in Section 4.

3.1 Mounting points
We assume that objects are joined at fixed mounting points (e.g.,
holes for screws), as shown in Figure 3. The mounting points are



Error description Category
Wrong location Execution error

Wrong orientation Execution error
Part forgotten Omission error

Choosing a similar part Confusion error
Wrong symmetric location Confusion error

Table 1: Typical errors made by users during assembly and corre-
sponding error categories.

3D locations with associated orientation (six degrees of freedom in
total) placed on the surface of the object with their z-axis pointed
outward in the mounting direction. We consider the forward mount-
ing point, the z-axis, to be the mounting direction associated with a
mounting point. The mounting points indicate where another part
of the object with a matching mounting point can be attached. Ev-
ery mounting point enables new state, which can be a valid state
or an error state. Using the mounting points, we implement the er-
ror cases indicated in Table 1. Our error criteria are based previous
work [36] where common errors made by users during assembly on
a workbench are identified. In the conducted user study, five cate-
gories to model possible error states are identified. We chose to also
use these categories since they were experimentally observed in a
similar scenario to ours. To determine whether a part fits, we first
check whether the mounting points are compatible. For example,
a nut can be mounted on a pin. Another check determines whether
the mounting point is occupied. We only generate common, plau-
sible errors as a subset of all possible one-step errors. The number
of generated states can be controlled by metaparameters such as the
radius for mistakes around the correct mounting point.

A part can either occupy one or multiple mounting points in the
case of an extended overlap. In Figure 3(a), the gray horizontal pin
is mounted at only one point, but due to its elongated shape, the
part occupies multiple mounting points at once, on both sides of
the object, so no other part can be mounted at this location.

Each part is configured with a global transformation as well as
a local offset from the origin in local coordinates to the mounting
point used in a particular assembly step. For simplicity, we consider
this offset to be unique for each part, and we apply the same offset
whenever we mount the part.

3.2 Part similarity
To simulate part confusion, we implement a shape similarity check
between parts. First, we implement a basic measure of shape simi-
larity: The three dimensions of the parts’ bounding boxes are com-
pared, and the parts are accepted as similar if the difference of
the largest dimension is not greater than 30%. Furthermore, we
compare shapes by surface point registration, similar to Stanescu
et al. [43]. We use Open3D [60] and Meshlab [7] to sample part
meshes as point clouds. The point clouds are globally registered
via iterative closest points, followed by a bidirectional point-to-
point distance measurement. The distances are normalized, aver-
aged, and thresholded, resulting in a value close to zero for simi-
lar parts. Other approaches could be considered, such as more ad-
vanced methods on 3D shape similarity and retrieval [4, 5, 2], but
we found that the described approach suffices for our purposes.

3.3 Error state generation
With the preparations above, we can now express how error states
should be generated.

Wrong location An execution error occurs if a part is incor-
rectly attached to a mounting point, typically near the correct one.
To generate this case, we search for all mounting points within a
radius of the correct point. The radius is empirically chosen to be
20% of the length of the object’s bounding box. For each nearby
mounting point, we place the part at the corresponding locations,

Figure 3: Mounting points and example data. (a) Mounting points
(in green) on an object in a particular state. The mounting points
can be in holes as well as, for example, on top of a pin, or on the
object surface. (b) Samples from our synthetic datasets.

orient it in the local coordinate system given by the mounting point,
and add this configuration as an error state.

Wrong orientation In this type of execution error, a part is
mounted at the correct mounting point, but in an incorrect pose.
For machine assemblies, typical orientation errors are rotations by
90 degrees or flipping/rotation by 180 degrees. However, other pose
errors can be considered as well, if necessary. To generate the error
state, we start with the correct object transformation and rotate the
object around the z-axis perpendicular to the mounting point. In
our implementation, we only include a 180 degree rotation.

Part omission Here, the user skips a part and proceeds directly
to the next part. This case is straightforward to implement; we sim-
ply create an assembly without the skipped part and a correspond-
ing error state. For simplicity, we skip only one component, but
more omitted parts could easily be considered.

Similar part An error by confusion happens when a visually
similar part is mounted instead of the correct one. All spare parts
that are similar to the current part according to the similarity metric
described above replace it in the configuration. If multiple instances
of the same part type are in the spare parts set, the configuration is
generated only once per type. Duplicates of the correct part con-
tained in the spare parts set are ignored.

Wrong symmetric location A second type of error by confu-
sion involves mounting a part at an incorrect mounting point due to
symmetry. We compute the symmetry of the current state of the ob-
ject before mounting the next part by mirroring the model. If there
is a mounting point in the flipped object very close to the original
mounting point, we generate an error state with the part mounted to
this new point.

4 PROCEDURAL ERROR GENERATOR

We implemented the procedural error state generator as an applica-
tion in the Unity game engine. Our aim is to automatically generate
all valid states and the error states described in the last section and
to render training images for deep learning.

4.1 Input data requirements
Our generator expects the input to meet the following requirements:

First, we need the geometry, which is usually derived from a
CAD model, segmented into parts. In our implementation, we use
object partitions [20]. A partition can consist of a single part or
multiple parts that are added at once to transition to the next assem-
bly state. For simplicity, we will use the term ‘part’ in the rest of
this paper, even if it refers to a multi-part partition. Errors within a
partition are not supported; they can be achieved by defining more
intermediate states, as in Figure 5 for the toy car.



Backbone Neck Head

Real image + state Prediction

Inference

Prediction Ground Truth

Class: state5 Class: state5

StateVec

SupCon Projection SupCon Loss
Training

Synthetic image + state Losses = Box Loss + Object Loss + Class Loss + SupCon Loss

AR Application

Class: state5

Figure 4: Architecture overview of YOLOv9 (GELAN), split into the training pipeline on the top and the inference pipeline on the bottom.
The supervised contrastive (SupCon) loss, which is built on the highest resolution branch of the neck, is used only during training. The
state-aware layer StateVec is placed between the network neck and head, and receives the previous state as input.

Second, we require the assembly graph of the correct states. The
assembly graph does not need to cover all the possible states. It
may be restricted to a specific order or preferred sequence. In each
state transition, only one part can be added. The part is taken from
the set of spare parts available, which initially consists of all parts.
When a part is added to a step, it is removed from the spare parts.

Third, we assume that mounting points are defined as anno-
tations to the part geometry, together with mounting point com-
patibility and mounting pose per part. In a practical scenario,
this information would be created by geometric disassembly plan-
ning [20, 54, 10], deep learning [56], or manual authoring. We place
only one mounting point between any pair of parts. For simplicity,
we do not consider multiple mounting points or mounting edges.

4.2 Generation workflow
The generator outputs a set of Unity prefabs corresponding to the
correct assembly states. For each state, a set of errors of various
types is created. Each prefab has a corresponding label that speci-
fies which parts are present and at which part an error is introduced.
This representation is forwarded to the dataset renderer, which gen-
erates training images and training labels for each state.

Generation progresses along a selected path through the assem-
bly graph. To generate the valid states, we perform a depth-first
traversal of the assembly graph and place the parts in their correct
position at the correct mounting points For each incoming edge of a
node in the assembly graph, all errors are generated according to the
heuristics. After exporting all prefabs belonging to the state (correct
as well as errors), the next state in the selected path is processed.

4.3 Rendering
For rendering the objects, we rely on the Perception framework [18,
3] which specializes in the generation of synthetic data using the
Unity engine. For domain randomization, we vary the pose of the
object state, as well as the backgrounds and the light color, and
render with Unity’s HDRP rendering pipeline. The camera param-
eters are set to resemble those of a HoloLens device. For the back-
grounds, we collect our own images of various messy desks that
simulate an AR workbench environment.

We exclude images where the next part is completely occluded
and cannot be observed in the rendered frame, since we assume that
the user typically looks at the part while mounting it. An image
mask of the latest added part is used to identify and discard frames
where the part is visible in fewer than a given number of pixels.

In addition, we use measures to further increase the realism of
the data. For example, we render models with a shader that ap-
proximates the appearance of the 3D printed parts we use in AR
experiments as closely as possible by simulating the filament sur-
face structure using a normal map. For the ‘drawer’ dataset we use
scanned textures to closely resemble the appearance of the object.

The images show the assembly in the current state as defined in
the prefab, while spare parts are placed at random locations in the
scene. Furthermore, we introduce hands as distractors and occlud-
ers in random poses to simulate the presence of the user (Fig. 3b).

5 STATE DETECTION NETWORK

Similarly to previous work on state detection [40, 42] we use
YOLO, a leading real-time object detector in its latest version [52].
We experiment with two extensions, state-aware detection and con-
trastive learning, applied to the GELAN-C variant of YOLOv9.

For state detection with a predefined assembly graph, we im-
plement the state-aware detection module proposed by Stanescu et
al. [42], which was shown to improve YOLOv7 detection by ex-
ploiting an assembly graph. This module takes the previously de-
tected state as input to a module StateVec. An internal representa-
tion of that state is added to the features of the network. The module
is located between the neck and head of YOLOv7, and we place it
in the same position in YOLOv9, right before the DDetect module.

Due to the visual similarity of our classes to each other, some-
times with only very subtle differences, we employ supervised con-
trastive learning [21] to further improve the state detection per-
formance. Figure 4 shows these enhancements to the network
architecture. Contrastive learning has been successfully applied
in YOLOv5 to enhance the performance on thermal images [46].
However, it has not yet been explored in the context of state detec-
tion and when models are trained with synthetic images. The main
idea behind contrastive learning is to achieve class-based cluster-
ing in feature space by attracting the feature representation of im-
ages of the same class to one another, while repelling the feature
representation of images of different classes. This is implemented
by obtaining the feature representation r of an image in a hidden
layer of the network during training. Due to the high dimension-
ality of the intermediate feature representation, we follow related
work [15, 21] and use a projection head H(·) to project the fea-
ture representation r to a low-dimensional projected feature vector
z = H(r). The contrastive loss is then computed for pairs of pro-
jected feature vectors, which are attracted to or repelled on the basis
of their class by minimizing or maximizing their distance in terms
of cosine similarity. We apply the contrastive loss to the entire batch
to ensure that a sufficient number of same- and different-class sam-
ples are available for each weight update. In this way, each sample
is considered as the anchor that attracts or repels all other samples
in the same batch. The supervised contrastive loss is defined as in
the work of Tian et al. [45]. Applied to YOLOv9, it is added as an
additional term to the original three loss terms Lbox, Lcls and Ld f l ,
resulting in the final optimization target:

L = w1Lbox +w2Lcls +w3Ld f l +w4Lsupcon, (1)

where w1 . . .w4 are used as weights for the individual loss terms.



Figure 5: Error states. (a) Original assembly graph of the IndustReal dataset shown in black. (b) Subgraph of the IndustReal dataset used
for evaluation, with added error states. (c) Example subset of error states generated by our system for State 7 of the IndustReal dataset. (d)
Complete assembly graph of the IKEA drawer. (e). Subset of the drawer dataset used for evaluation, with generated error states.

Implementation Details Our implementation directly em-
ploys YOLOv9 as the encoder for the images from which we ob-
tain the feature representation r from the neck part of the network,
specifically, at the output of layer 15 as defined in the network con-
figuration file. The projection head H(·) is implemented as an adap-
tive max-pooling with the output size 1, followed by a linear layer
with the same feature size as the input. L2 normalization is ap-
plied [45] before computing the contrastive loss. Since the pro-
jection head is only required during training, it is not used after
training finishes and, consequently, does not impose any additional
computational cost during inference (86 ms per image).

6 RESULTS

For our experiments, we focus on two datasets. The first dataset rep-
resents furniture, specifically a set of drawers. The second dataset
is taken from the STEMFIE project [24, 40], with its parts modified
to more closely resemble their 3D printed counterparts.

6.1 Enhanced assembly graphs
Our datasets are given as a hierarchy which implicitly contains the
structure of the assembly graph.

Toy car We define the partitions of the IndustReal object in the
same way as defined in the original paper [40], which allows us
to combine the output of our procedural error generator with the
original dataset. The original dataset contains 22 success states, to
which we add the automatically generated error states. The original
dataset also includes state 23, which is a collective label for all er-
rors that were noticed during assembly. The partitions are defined
as consisting of multiple parts, and multiple partitions can be added
in one step. For a practical AR application, it would be possible to
modify the dataset by adding intermediate states and further split-
ting the partitions before generating the synthetic training data.

In Figure 5b, we show an example of the error states generated
for this object. The user can easily make the error of mounting the
horizontal pin in State 7 at a nearby location. Our error generator
creates configurations that reflect this problem.

Drawer The partitions of our second object, the drawer, are de-
fined as shown in Figure 5. For the drawer, each state adds exactly
one part to the assembly. We exemplify some generated errors in
Figure 5e, namely the wrong mounting location for the screws, or
the flipping of the side and bottom part.

6.2 Datasets used for comparison
We create a few variants of datasets for our experiments using sub-
sets of our generated error states: IndustReal-small-err and Drawer-
small-err. Their assembly graphs are shown in Figure 5.

While Drawer is a dataset introduced in this paper, IndustReal-
small-err contains a subset of real data from the industReal dataset
and synthetic data rendered using the output of our error generator.
We render each class with roughly 1500 samples/class. IndustReal-
small-err contains 6144 images in the training, 876 in the valida-
tion, and 1754 in the synthetic test set, and 258 in the real test
set that comes directly from the IndustReal dataset, including the
recorded error class. The Drawer-small-err contains 10016 images
in the training, 1445 in the validation, and 2886 in the synthetic test
set, as well as 484 in the real test set. The synthetic test sets were
obtained by a 70, 10, 20 percent split for training, validation and
testing. The test set is independent and based on real data. The
validation set is only used to select the best model in terms of mAP.

Furthermore, we also create two variations of the IndustReal-
small-err dataset by replacing a small set of samples with real data,
5% and 2%, respectively. We use these for the experiment of mix-
ing real and synthetic data, since real training data is available in
the public dataset. We only add real data to the success classes, not
to the error classes, since in a real-world application it would be
challenging to capture and observe errors as users commit them.

6.3 Detecting states and errors
Model comparison We evaluate the proposed state detector

by comparing it with related work, as well as by performing a step-
by-step ablation of our extensions to YOLOv9. As it is a stan-
dard measure for object detection, we evaluate methods using the
mean average precision (mAP), specifically, the mAP50 and the
mAP50-90 metrics, as well as a confidence of 0.001 and an IOU
threshold of 0.45. Table 2 shows that the proposed YOLOv9 State
Supcon method outperforms related work on both the IndustReal-
small-err and the Drawer-small-err dataset. Closer inspection of
the ablation results on the IndustReal-small-err dataset reveals that
both YOLOv9 State and YOLOv9 Supcon result in improvements
compared to the YOLOv9 baseline. However, in the Drawer-small-
err data set, YOLOv9 Supcon by itself underperformed on the
mAP50-90 metric compared to the YOLOv9 baseline, which we
assume to be caused by some very minimal visual differences like
the presence or position of small screws between individual states
that are challenging to correctly identify in some cases. Never-
theless, the proposed YOLOv9 State Supcon method achieves the
overall best performance when compared to the step-by-step abla-
tions, YOLOv9 State and YOLOv9 Supcon. Furthermore, when
observing the results on the Industreal-bboxed dataset, YOLOv9
Supcon also improves over related work as well as the YOLOv9
baseline, most notably on the mAP50 metric. Since all error states
are defined as a single error class in the Industreal-bboxed dataset,
the state-aware module is not directly applicable without separating



Table 2: Different variants of the state detectors (YOLOv7 and YOLOv9), with constrastive loss and state-aware module ehancements.

Dataset Train (synthetic) Dataset Test (real) #States Approach mAP50 mAP50-90

IndustReal-small-err IndustReal-small-err 6

YOLOv7 [51] 0.718 0.378
YOLOv7 State [42] 0.885 0.515
YOLOv9 [52] 0.92 0.597
YOLOv9 State only 0.981 0.637
YOLOv9 Supcon only 0.957 0.616
YOLOv9 State Supcon (ours) 0.982 0.653

Drawer-small-err Drawer-small-err 11

YOLOv7 [51] 0.28 0.236
YOLOv7 State [42] 0.582 0.49
YOLOv9 [52] 0.486 0.44
YOLOv9 State only 0.678 0.609
YOLOv9 Supcon only 0.468 0.412
YOLOv9 State Supcon (ours) 0.681 0.611

IndustReal-bboxed IndustReal-bboxed 23
YOLOv8 [40] 0.573 -
YOLOv9 0.59 0.324
YOLOv9 Supcon only 0.611 0.327

Table 3: Experiments with different mixtures of synthetic and real data for training, added only to the success states.

Dataset Train Dataset Test #States Approach mAP50 mAP50-90

IndustReal-small-err IndustReal-small-err 6 YOLOv9 [52] 0.92 0.597
YOLOv9 State Supcon 0.982 0.653

IndustReal-small-err
98% synth 2% real IndustReal-small-err 6

YOLOv9 [52] 0.995 0.79
YOLOv9 State only 0.995 0.826
YOLOv9 Supcon only 0.995 0.815
YOLOv9 State Supcon 0.966 0.829

IndustReal-small-err
95% synth 5% real IndustReal-small-err 6

YOLOv9 [52] 0.987 0.812
YOLOv9 State only 0.995 0.834
YOLOv9 Supcon only 0.995 0.837
YOLOv9 State Supcon 0.994 0.838

different error states into different error classes and, consequently,
cannot be evaluated on this dataset.

Furthermore, in Table 3 we experiment with mixing real and
synthetic data when training the model on the IndustReal-small-
err dataset. Specifically, results are provided for models trained
98% of synthetic and 2% of real data as well as 95% of synthetic
and 5% of real data. Compared to the results trained exclusively
on synthetic data, it can be observed that using only very small
proportions like 2% of real data already greatly improves the per-
formance of the state detector. In addition, an improvement can
be achieved by increasing the proportion of real data from 2% to
5% for all experiments. Similarly to before, the YOLOv9 State and
Supcon variants both lead to an improvement compared to the base-
line YOLOv9, while the proposed YOLOv9 State Supcon method
achieves the overall best results on the mAP50-90 metric.

We also show the performance per class for the mixed data. As
shown in Table 4, adding a small proportion of real data only to the
success classes of the synthetic training set leads to an increase in
performance of all classes, including the error class. So, in this case,
error state 13 also benefits in terms of mAP from adding real data
to the other states, although it is synthetic in both training rounds.

Experimental Setup For contrastive loss, we used parameters
0.1 for temperature τ , and the parameter λ to weigh the loss term
was experimentally chosen to be 0.1 (YOLOv7) or 0.01 (YOLOv9).
The experiments are trained for 150 epochs, at a learning rate of
0.01 in YOLOv9 and 0.01-0.1 in YOLOv7, as in the public reposi-
tories with the original implementations of these networks. We used
the SGD optimizer, batch size 32, and an image size of 512×512.

Since the StateYOLO training might process the same image
twice, just with different previous states, the experiments with the
state-aware networks are stopped after reaching the same number
of iterations as the ones without the states. For the StateVec mod-

Table 4: Performance per class for synthetic-only data trained on
the baseline model YOLOv9, and our best model YOLOv9 State
Supcon with the 95/5 data mix.

Class mAP50-90 Class mAP50-90
(State) Synth only (State) Mixed

training training
S 8 0.439 S 8 (95% synth 5% real) 0.754
S 9 0.578 S 9 (95% synth 5% real) 0.821
S 12 0.715 S 12 (95% synth 5% real) 0.889
S 10 0.751 S 10 (95% synth 5% real) 0.769
S 13 0.806 S 13 (95% synth 5% real) 0.906
S 13 err 0.631 S 13 err (100% synth) 0.889

ule, we use the StateYOLO-mlp architecture [42] in YOLOv9. The
IndustReal comparison experiment was run with the ADAM opti-
mizer for 50 epochs, with the original hyperparameters [40].

Data Visualizations We visualize the clusters of our data em-
beddings using t-SNE [48], a non-linear dimensionality reduction
algorithm that preserves the spatial relationship between samples.
We run t-SNE on the test sets of IndustReal-small-err, and compute
it at the network position where the contrastive loss is enforced.
The t-SNE results in Figure 6 show that contrastive loss has an im-
pact on hidden features, clustering them in a meaningful way, and
showing the effect of clustering similar classes. In both plots, but
especially in the synthetic data images on the left side, it can be ob-
served that the consecutive classes are in each other’s vicinity. This
reflects the geometric difference of the states in the assembly graph,
where neighboring states are more similar.

6.4 AR application
We implemented an AR instructions application using our state de-
tector in the Unity game engine. The application and the imple-



Figure 6: Embeddings of the states from the IndustReal-small-err dataset, visualized with t-SNE in (a) YOLOv9 on synthetic data, (b)
YOLOv9 with contrastive loss on synthetic data, (c) YOLOv9 on real data, and (d) YOLOv9 with contrastive loss on real data.

mented workflow are illustrated in Figure 1. The instruction appli-
cation guides the user through an assembly procedure, continuously
detecting and proposing corrections to errors. It shows a 3D model
of the object next to the physical work area, indicating which part
needs to be mounted next by highlighting the part and showing a
magnified copy. We believe that showing the part separately and in
an unmounted state is important to let the user clearly see the rel-
evant part, especially if it is small and disappears in the unfinished
assembly after mounting. Showing only assembled states would
force the user to compare the states, a task which can be difficult
due to change blindness [1]. For the same reason, we show an an-
imation of the repair process if an error state is detected. If parts
are different, the wrong part is highlighted in red in the error dis-
play area, while the correct part is shown in the instruction for the
current step as can be seen in Figure 7.

The AR application runs on the HoloLens 2, and our state detec-
tor runs on a server on the local network. We use the HLSS project
for live streaming the images [8]. The detector aggregates votes
over a small window of consecutive frames to robustly confirm the
detection of a new assembly state. If a transition to the new state is
found in the assembly graph, the state progresses to the confirmed
state, and the visualization is updated.

7 DISCUSSION

When generating error states, we consider single errors, but we
do not handle multiple linked errors encountered after progressing
through multiple steps. Our rationale is based on the expectation
that the user makes only one error at a time, provided the AR ap-
plication can immediately detect the error and suggest its rectifica-
tion. Studying chained errors represents an interesting direction for
future work, but we believe that detecting individual errors repre-
sents a worthy contribution in itself: In many applications feedback
should be provided instantly if the first user error is detected. A dif-
ferent task would be detecting defects, like fractures or corrosion.
Our method can be extended to detect such defects provided the
corresponding training data can be collected or generated.

Furthermore, the error state generator could be improved to
cover a broader range of error criteria, handle collision detection,
and support more complex forms of mounting. The error state con-
figurations could be generated using a neural network instead of a
heuristic classification. A model could be trained to generate likely
errors made by humans, given either example error configurations,
example videos, or text descriptions as input.

The need for assembly graphs is not specific to our error detec-
tion method [30, 57]. Our method does require extending the graph
with states representing errors, but in all critical applications, main-
tenance and assembly procedures are analyzed for possible errors.
Therefore, adding the corresponding states to the assembly graph
does not incur a significant cost. On the contrary, our procedural
error generator automates this process.

The increased number of states leads to a larger training set, as
images need to be generated for each error state. However, the

Figure 7: Error visualization. (a) Our proof of concept application
shows a red highlight of the error, namely the wrongfully flipped
pin holding the wheels, and suggests the correct configuration in
green. (b) The next instruction is shown once a step was completed.

required training time does not grow linearly with the number of
states, because images of the error states are visually similar to the
images of the correct states. Since the error states contain the same
parts as the correct states, distinguishing them does not require rec-
ognizing new visual cues, but rather differentiating compositions
of already known elements. Investigating the scale of the effects
described above represents an interesting direction for future work.

8 CONCLUSIONS AND FUTURE WORK

We introduce an approach for state and error detection, including
a method for generating synthetic data, and we provide a proof-
of-concept AR guidance application. Our work demonstrates that
joint state detection and error correction is technically feasible even
for very similar assembly states. Although we believe that our cur-
rent system is already beneficial for providing important informa-
tion during AR guidance, we see several directions for future work.

We also plan to improve the realism of the synthetic examples.
For example, GrabNet [44] or EgoGen [27] could be used to replace
random hand poses with common mounting gestures. In addition,
we plan to integrate object tracking. With an object tracking ap-
proach such as GBOT [28], the user interface of the AR application
can be improved. For example, the next part to manipulate can be
shown in 3D, registered on top of or next to the partial assembly.
However, tracking introduces additional challenges in terms of sta-
bility and run-time.

Also, in the future we intend to perform user studies to evaluate
how our error detection method can improve the user experience.

In summary, the improvements we introduced to the network are
very well suited for our use case, while the inference remains real-
time. We show that, even with small batches, contrastive learning
improves the measured performance. To support future research,
we publish our datasets online.



REFERENCES

[1] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner, P. Han-
rahan, and B. Tversky. Designing effective step-by-step assembly in-
structions. ACM Transactions on Graphics (TOG), 22(3):828–837,
2003. 8

[2] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein. Recent trends,
applications, and perspectives in 3d shape similarity assessment. In
Computer graphics forum, vol. 35, pp. 87–119. Wiley Online Library,
2016. 4

[3] S. Borkman, A. Crespi, S. Dhakad, S. Ganguly, J. Hogins, Y.-C.
Jhang, M. Kamalzadeh, B. Li, S. Leal, P. Parisi, et al. Unity per-
ception: Generate synthetic data for computer vision. arXiv preprint
arXiv:2107.04259, 2021. 5

[4] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V. Vranic.
Using entropy impurity for improved 3d object similarity search.
In 2004 IEEE International Conference on Multimedia and Expo
(ICME)(IEEE Cat. No. 04TH8763), vol. 2, pp. 1303–1306. IEEE,
2004. 4

[5] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V. Vranić.
Feature-based similarity search in 3d object databases. ACM Com-
puting Surveys (CSUR), 37(4):345–387, 2005. 4

[6] S. Castelo, J. Rulff, E. McGowan, B. Steers, G. Wu, S. Chen, I. Ro-
man, R. Lopez, E. Brewer, C. Zhao, et al. Argus: Visualization of
ai-assisted task guidance in ar. IEEE Transactions on Visualization
and Computer Graphics, 2023. 2

[7] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. In
V. Scarano, R. D. Chiara, and U. Erra, eds., Eurographics Italian
Chapter Conference. The Eurographics Association, 2008. doi: 10.
2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136 4

[8] J. C. Dibene and E. Dunn. Hololens 2 sensor streaming. arXiv preprint
arXiv:2211.02648, 2022. 8

[9] G. Ding, F. Sener, S. Ma, and A. Yao. Every mistake counts in assem-
bly. arXiv preprint arXiv:2307.16453, 2023. 3

[10] C.-W. Fu, P. Song, X. Yan, L. W. Yang, P. K. Jayaraman, and
D. Cohen-Or. Computational interlocking furniture assembly. ACM
Transactions on Graphics (TOG), 34(4):1–11, 2015. 5

[11] German-Aerospace-Center. Blenderproc. Project website, 2024.
https://dlr-rm.github.io/BlenderProc/. 3

[12] R. Ghoddoosian, I. Dwivedi, N. Agarwal, and B. Dariush. Weakly-
supervised action segmentation and unseen error detection in anoma-
lous instructional videos. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 10128–10138, 2023. 3

[13] X. Guo, M. Zhou, A. Abusorrah, F. Alsokhiry, and K. Sedraoui. Dis-
assembly sequence planning: a survey. IEEE/CAA Journal of Auto-
matica Sinica, 8(7):1308–1324, 2020. 3

[14] A. Gupta, D. Fox, B. Curless, and M. Cohen. Duplotrack: a real-
time system for authoring and guiding duplo block assembly. In Proc.
ACM Symposium on User Interface Software and Technology (UIST),
pp. 389–402, 2012. doi: 10.1145/2380116.2380167 2

[15] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceed-
ings of the thirteenth international conference on artificial intelligence
and statistics, pp. 297–304. JMLR Workshop and Conference Pro-
ceedings, 2010. 5

[16] S. J. Henderson and S. K. Feiner. Augmented reality in the psychomo-
tor phase of a procedural task. In Proc. International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 191–200. IEEE, 2011.
doi: 10.1109/ISMAR.2011.6092386 1

[17] Y. Jang, B. Sullivan, C. Ludwig, I. Gilchrist, D. Damen, and
W. Mayol-Cuevas. Epic-tent: An egocentric video dataset for camping
tent assembly. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision Workshops, pp. 0–0, 2019. 3

[18] Y.-C. Jhang, A. Palmar, B. Li, S. Dhakad, S. K. Vishwakarma,
J. Hogins, A. Crespi, C. Kerr, S. Chockalingam, C. Romero,
A. Thaman, and S. Ganguly. Training a performant object de-
tection ML model on synthetic data using Unity Perception tools.
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-
detection-ml-model-on-synthetic-data-using-unity-computer-vision-
tools/, Sep 2020. 5

[19] D. Kalkofen, M. Tatzgern, and D. Schmalstieg. Explosion diagrams in
augmented reality. In Proc. IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pp. 71–78, 2009. doi: 10.1109/VR.2009.
4811001 3

[20] B. Kerbl, D. Kalkofen, M. Steinberger, and D. Schmalstieg. Interac-
tive disassembly planning for complex objects. Computer Graphics
Forum, 34(2):287–297, may 2015. doi: 10.1111/cgf.12560 3, 4, 5

[21] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised contrastive learn-
ing. Advances in neural information processing systems, 33:18661–
18673, 2020. 5

[22] B. M. Khuong, K. Kiyokawa, A. Miller, J. J. La Viola, T. Mashita, and
H. Takemura. The effectiveness of an ar-based context-aware assem-
bly support system in object assembly. In 2014 IEEE Virtual Reality
(VR), pp. 57–62. IEEE, 2014. 2

[23] B. M. Khuong, K. Kiyokawa, A. Miller, J. J. LaViola Jr, T. Mashita,
and H. Takemura. Context-related visualization modes of an ar-based
context-aware assembly support system in object assembly (special
issue mixed reality). Transactions of the Virtual Reality Society of
Japan, 19(2):195–205, 2014. 2

[24] P. Kiefe. Stemfie. https://stemfie.org/sps-000001, 2022. 6
[25] B. Kirwan. The validation of three human reliability quantifica-

tion techniques—THERP, HEART and JHEDI: Part 1—technique de-
scriptions and validation issues. Applied ergonomics, 27(6):359–373,
1996. 2

[26] R. Leonardi, A. Furnari, F. Ragusa, and G. M. Farinella. Are syn-
thetic data useful for egocentric hand-object interaction detection? an
investigation and the hoi-synth domain adaptation benchmark. arXiv
preprint arXiv:2312.02672, 2023. 3

[27] G. Li, K. Zhao, S. Zhang, X. Lyu, M. Dusmanu, Y. Zhang, M. Polle-
feys, and S. Tang. EgoGen: An Egocentric Synthetic Data Genera-
tor. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024. 8

[28] S. Li, H. Schieber, N. Corell, B. Egger, J. Kreimeier, and D. Roth.
GBOT: Graph-Based 3D Object Tracking for Augmented Reality-
Assisted Assembly Guidance. In Proc. IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pp. 513–523, 2024. doi: 10.
1109/VR58804.2024.00072 2, 3, 8

[29] W. Li, X. Aibo, M. Wei, W. Zuo, and R. Li. Deep learning-based aug-
mented reality work instruction assistance system for complex manual
assembly. Journal of Manufacturing Systems, 73:307–319, 2024. 2

[30] H. Liu, Y. Su, J. Rambach, A. Pagani, and D. Stricker. Tga: Two-
level group attention for assembly state detection. In IEEE Int. Symp.
on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 258–
263. IEEE, 2020. doi: 10.1109/ISMAR-Adjunct51615.2020.00074 2,
3, 8

[31] E. Marino, L. Barbieri, F. Bruno, and M. Muzzupappa. Assessing user
performance in augmented reality assembly guidance for industry 4.0
operators. Computers in Industry, 157:104085, 2024. 1

[32] M. Narasimhan, L. Yu, S. Bell, N. Zhang, and T. Darrell. Learning and
verification of task structure in instructional videos. arXiv preprint
arXiv:2303.13519, 2023. 2

[33] NVIDIA. Omniverse replicator. Online announcement, 2024.
https://nvidianews.nvidia.com/news/nvidia-announces-omniverse-
replicator-synthetic-data-generation-engine-for-training-ais. 3

[34] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev, S. Avidan,
and M. F. Cohen. Pause-and-play: automatically linking screencast
video tutorials with applications. In Proc. ACM Symposium on User
Interface Software and Technology (UIST), pp. 135–144, 2011. doi:
10.1145/2047196.2047213 1

[35] V. Raghavan, J. Molineros, and R. Sharma. Interactive evaluation of
assembly sequences using augmented reality. IEEE Transactions on
Robotics and Automation, 15(3):435–449, 1999. 3

[36] A. Riedel, J. Gerlach, M. Dietsch, S. Herbst, F. Engelmann, N. Brehm,
and T. Pfeifroth. A deep learning-based worker assistance system for
error prevention: case study in a real-world manual assembly. Ad-
vances in Production Engineering & Management, 16(4):393–404,
2021. 1, 2, 4

[37] C. Rolim, D. Schmalstieg, D. Kalkofen, and V. Teichrieb. Design
guidelines for generating augmented reality instructions. In Proceed-



ings of the 2015 IEEE International Symposium on Mixed and Aug-
mented Reality, p. 120–123. IEEE Computer Society, USA, 2015. doi:
10.1109/ISMAR.2015.36 1

[38] H. Schieber, K. C. Demir, C. Kleinbeck, S. H. Yang, and D. Roth. In-
door synthetic data generation: A systematic review. Computer Vision
and Image Understanding, p. 103907, 2024. 3

[39] D. Schmalstieg and T. Höllerer. Augmented Reality - Principles and
Practice. Addison-Wesley Professional, June 2016. 1

[40] T. J. Schoonbeek, T. Houben, H. Onvlee, P. H. de With, and F. Van der
Sommen. IndustReal: A Dataset for Procedure Step Recognition
Handling Execution Errors in Egocentric Videos in an Industrial-
Like Setting. In 2024 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 4353–4362, 2024. doi: 10.1109/
WACV57701.2024.00431 3, 5, 6, 7

[41] F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R. Wang,
and A. Yao. Assembly101: A large-scale multi-view video dataset for
understanding procedural activities. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21096–
21106, 2022. 3

[42] A. Stanescu, P. Mohr, M. Kozinski, S. Mori, D. Schmalstieg, and
D. Kalkofen. State-Aware Configuration Detection for Augmented
Reality Step-by-Step Tutorials. In Proc. International Symposium
on Mixed and Augmented Reality (ISMAR), 2023. doi: 10.1109/
ISMAR59233.2023.00030 1, 2, 3, 5, 7

[43] A. Stanescu, P. Mohr, D. Schmalstieg, and D. Kalkofen. Model-free
authoring by demonstration of assembly instructions in augmented
reality. IEEE Transactions on Visualization and Computer Graph-
ics (TVCG), 28(11):3821–3831, 2022. doi: 10.1109/TVCG.2022.
3203104 1, 2, 4

[44] O. Taheri, N. Ghorbani, M. J. Black, and D. Tzionas. GRAB: A
dataset of whole-body human grasping of objects. In European Con-
ference on Computer Vision (ECCV), 2020. 8

[45] Y. Tian, L. Fan, P. Isola, H. Chang, and D. Krishnan. Stablerep: Syn-
thetic images from text-to-image models make strong visual represen-
tation learners. Advances in Neural Information Processing Systems,
36, 2024. 5, 6

[46] X. Tu, Z. Yuan, B. Liu, J. Liu, Y. Hu, H. Hua, and L. Wei. An im-
proved yolov5 for object detection in visible and thermal infrared im-
ages based on contrastive learning. Frontiers in Physics, 11:1193245,
2023. 5

[47] Unity Technologies. Unity Perception package.
https://github.com/Unity-Technologies/com.unity.perception, 2020. 3

[48] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Jour-
nal of machine learning research, 9(11), 2008. 7

[49] VDI-Handbuch Zuverlässigkeit. Human reliability – methods for
quantitative assessment of human reliability, 11 2017. VDI 4006/F2.
2

[50] B. Wang, G. Wang, A. Sharf, Y. Li, F. Zhong, X. Qin, D. CohenOr,
and B. Chen. Active assembly guidance with online video parsing.
In Proc. IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pp. 459–466. IEEE, 2018. doi: 10.1109/VR.2018.8446602 1, 2

[51] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detec-
tors. In Proc. Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7464–7475, June 2023. 3, 7

[52] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao. Yolov9: Learning what
you want to learn using programmable gradient information. arXiv
preprint arXiv:2402.13616, 2024. 5, 7

[53] X. Wang, T. Kwon, M. Rad, B. Pan, I. Chakraborty, S. Andrist, D. Bo-
hus, A. Feniello, B. Tekin, F. V. Frujeri, et al. Holoassist: an egocen-
tric human interaction dataset for interactive ai assistants in the real
world. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 20270–20281, 2023. 3

[54] Z. Wang, P. Song, and M. Pauly. State of the art on computational
design of assemblies with rigid parts. In Computer graphics forum,
vol. 40, pp. 633–657. Wiley Online Library, 2021. 5

[55] O. Wasenmüller, M. Meyer, and D. Stricker. Augmented reality 3D
discrepancy check in industrial applications. In Proc. International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 125–134,
2016. doi: 10.1109/ISMAR.2016.15 1, 2

[56] K. D. Willis, P. K. Jayaraman, H. Chu, Y. Tian, Y. Li, D. Grandi,
A. Sanghi, L. Tran, J. G. Lambourne, A. Solar-Lezama, et al. Joinable:
Learning bottom-up assembly of parametric cad joints. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15849–15860, 2022. 5

[57] L.-C. Wu, I.-C. Lin, and M.-H. Tsai. Augmented reality instruction for
object assembly based on markerless tracking. In Proceedings ACM
Symposium on Interactive 3D Graphics and Games, pp. 95–102, 2016.
doi: 10.1145/2856400.2856416 1, 2, 8

[58] M. Yamaguchi, S. Mori, P. Mohr, M. Tatzgern, A. Stanescu, H. Saito,
and D. Kalkofen. Video-annotated augmented reality assembly tuto-
rials. In Proc. ACM Symposium on User Interface Software and Tech-
nology (UIST), pp. 1010–1022, 2020. doi: 10.1145/3379337.3415819
2

[59] B. Zhou and S. Güven. Fine-grained visual recognition in mobile
augmented reality for technical support. IEEE Transactions on Visu-
alization and Computer Graphics (TVCG), 26(12):3514–3523, 2020.
doi: 10.1109/TVCG.2020.3023635 2

[60] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D
data processing. arXiv:1801.09847, 2018. 4

[61] Z. Zhou, J. Liu, D. T. Pham, W. Xu, F. J. Ramirez, C. Ji, and Q. Liu.
Disassembly sequence planning: Recent developments and future
trends. Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, 233(5):1450–1471, 2019. 3


	Introduction
	Related work
	State detection
	Error management
	Error detection
	Assembly graphs
	Datasets of assembly procedures

	Error model
	Mounting points
	Part similarity
	Error state generation

	Procedural error generator
	Input data requirements
	Generation workflow
	Rendering

	State detection network
	Results
	Enhanced assembly graphs
	Datasets used for comparison
	Detecting states and errors
	AR application

	Discussion
	Conclusions and future work

